Infrared Multi-Pedestrian Tracking in Vertical View via Siamese Convolution Network

Target tracking has become one of the research hotspots in the field of computer vision in recent years. In this paper, a new intelligent algorithm of infrared multi-pedestrian tracking in vertical view is proposed. In the algorithm, the pedestrians in the infrared image can be quickly detected and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.42718-42725
Hauptverfasser: Shen, Guojiang, Zhu, Linfeng, Lou, Jihan, Shen, Si, Liu, Zhi, Tang, Longfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42725
container_issue
container_start_page 42718
container_title IEEE access
container_volume 7
creator Shen, Guojiang
Zhu, Linfeng
Lou, Jihan
Shen, Si
Liu, Zhi
Tang, Longfeng
description Target tracking has become one of the research hotspots in the field of computer vision in recent years. In this paper, a new intelligent algorithm of infrared multi-pedestrian tracking in vertical view is proposed. In the algorithm, the pedestrians in the infrared image can be quickly detected and located with the method of the Faster Regions with CNN features (RCNN) and then are tracked with the improved Siamese network. The tracking method based on Siamese network transforms the tracking problem into a similarity verification problem and evaluates the similarity score between new frame feature and target frame feature by convolution network. The candidate region with the highest score is considered as the current position of the target. In this paper, the Siamese network is combined with Faster RCNN for multi-pedestrian tracking. In addition, the tracking results of adjacent frames are introduced into the similarity evaluation of current frames to improve the tracking accuracy when the pedestrian posture changes. The experimental results show that the algorithm has good robustness and tracking result and achieves competitive performance.
doi_str_mv 10.1109/ACCESS.2019.2892469
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8610285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8610285</ieee_id><doaj_id>oai_doaj_org_article_3466ef78b5be4a55af35129885efe951</doaj_id><sourcerecordid>2455636187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f989026611a8a2bd31c4ed38318bb2fb0157c46602fbe2fcb62e45c202ac08773</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVMAX9GKJc4ofsWMfUVSgEi-pwNVynHXlNsTFSVvx9yQEVexlR6Od2dVOkkwJnhGC1c1tUcyXyxnFRM2oVDQT6iSZUCJUyjgTp__weXLVtmvcl-wpnk-S5aJx0USo0NOu7nz6ChW0XfSmQW_R2I1vVsg36ANi562p0YeHA9p7g5befEILqAjNPtS7zocGPUN3CHFzmZw5U7dw9dcvkve7-VvxkD6-3C-K28fUZlh2qVNSYSoEIUYaWlaM2AwqJhmRZUldiQnPbSYE7jFQZ0tBIeOWYmoslnnOLpLF6FsFs9bb6D9N_NbBeP1LhLjSZji7Bs16H3C5LHkJmeHcOMYJVVJycKA46b2uR69tDF-7_gV6HXax6c_XNONcMEHksJGNUzaGto3gjlsJ1kMYegxDD2HovzB61XRUeQA4KqQgmErOfgAGV4TC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455636187</pqid></control><display><type>article</type><title>Infrared Multi-Pedestrian Tracking in Vertical View via Siamese Convolution Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shen, Guojiang ; Zhu, Linfeng ; Lou, Jihan ; Shen, Si ; Liu, Zhi ; Tang, Longfeng</creator><creatorcontrib>Shen, Guojiang ; Zhu, Linfeng ; Lou, Jihan ; Shen, Si ; Liu, Zhi ; Tang, Longfeng</creatorcontrib><description>Target tracking has become one of the research hotspots in the field of computer vision in recent years. In this paper, a new intelligent algorithm of infrared multi-pedestrian tracking in vertical view is proposed. In the algorithm, the pedestrians in the infrared image can be quickly detected and located with the method of the Faster Regions with CNN features (RCNN) and then are tracked with the improved Siamese network. The tracking method based on Siamese network transforms the tracking problem into a similarity verification problem and evaluates the similarity score between new frame feature and target frame feature by convolution network. The candidate region with the highest score is considered as the current position of the target. In this paper, the Siamese network is combined with Faster RCNN for multi-pedestrian tracking. In addition, the tracking results of adjacent frames are introduced into the similarity evaluation of current frames to improve the tracking accuracy when the pedestrian posture changes. The experimental results show that the algorithm has good robustness and tracking result and achieves competitive performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2892469</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer vision ; Convolution ; convolution network ; Feature extraction ; infrared detection ; Infrared imagery ; Infrared tracking ; pedestrian tracking ; Pedestrians ; Proposals ; Real-time systems ; Siamese network ; Similarity ; Target tracking ; Tracking ; Tracking problem ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.42718-42725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f989026611a8a2bd31c4ed38318bb2fb0157c46602fbe2fcb62e45c202ac08773</citedby><cites>FETCH-LOGICAL-c408t-f989026611a8a2bd31c4ed38318bb2fb0157c46602fbe2fcb62e45c202ac08773</cites><orcidid>0000-0001-7746-9294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8610285$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shen, Guojiang</creatorcontrib><creatorcontrib>Zhu, Linfeng</creatorcontrib><creatorcontrib>Lou, Jihan</creatorcontrib><creatorcontrib>Shen, Si</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Tang, Longfeng</creatorcontrib><title>Infrared Multi-Pedestrian Tracking in Vertical View via Siamese Convolution Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Target tracking has become one of the research hotspots in the field of computer vision in recent years. In this paper, a new intelligent algorithm of infrared multi-pedestrian tracking in vertical view is proposed. In the algorithm, the pedestrians in the infrared image can be quickly detected and located with the method of the Faster Regions with CNN features (RCNN) and then are tracked with the improved Siamese network. The tracking method based on Siamese network transforms the tracking problem into a similarity verification problem and evaluates the similarity score between new frame feature and target frame feature by convolution network. The candidate region with the highest score is considered as the current position of the target. In this paper, the Siamese network is combined with Faster RCNN for multi-pedestrian tracking. In addition, the tracking results of adjacent frames are introduced into the similarity evaluation of current frames to improve the tracking accuracy when the pedestrian posture changes. The experimental results show that the algorithm has good robustness and tracking result and achieves competitive performance.</description><subject>Algorithms</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>convolution network</subject><subject>Feature extraction</subject><subject>infrared detection</subject><subject>Infrared imagery</subject><subject>Infrared tracking</subject><subject>pedestrian tracking</subject><subject>Pedestrians</subject><subject>Proposals</subject><subject>Real-time systems</subject><subject>Siamese network</subject><subject>Similarity</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Tracking problem</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVMAX9GKJc4ofsWMfUVSgEi-pwNVynHXlNsTFSVvx9yQEVexlR6Od2dVOkkwJnhGC1c1tUcyXyxnFRM2oVDQT6iSZUCJUyjgTp__weXLVtmvcl-wpnk-S5aJx0USo0NOu7nz6ChW0XfSmQW_R2I1vVsg36ANi562p0YeHA9p7g5befEILqAjNPtS7zocGPUN3CHFzmZw5U7dw9dcvkve7-VvxkD6-3C-K28fUZlh2qVNSYSoEIUYaWlaM2AwqJhmRZUldiQnPbSYE7jFQZ0tBIeOWYmoslnnOLpLF6FsFs9bb6D9N_NbBeP1LhLjSZji7Bs16H3C5LHkJmeHcOMYJVVJycKA46b2uR69tDF-7_gV6HXax6c_XNONcMEHksJGNUzaGto3gjlsJ1kMYegxDD2HovzB61XRUeQA4KqQgmErOfgAGV4TC</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Shen, Guojiang</creator><creator>Zhu, Linfeng</creator><creator>Lou, Jihan</creator><creator>Shen, Si</creator><creator>Liu, Zhi</creator><creator>Tang, Longfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7746-9294</orcidid></search><sort><creationdate>2019</creationdate><title>Infrared Multi-Pedestrian Tracking in Vertical View via Siamese Convolution Network</title><author>Shen, Guojiang ; Zhu, Linfeng ; Lou, Jihan ; Shen, Si ; Liu, Zhi ; Tang, Longfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f989026611a8a2bd31c4ed38318bb2fb0157c46602fbe2fcb62e45c202ac08773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>convolution network</topic><topic>Feature extraction</topic><topic>infrared detection</topic><topic>Infrared imagery</topic><topic>Infrared tracking</topic><topic>pedestrian tracking</topic><topic>Pedestrians</topic><topic>Proposals</topic><topic>Real-time systems</topic><topic>Siamese network</topic><topic>Similarity</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Tracking problem</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Guojiang</creatorcontrib><creatorcontrib>Zhu, Linfeng</creatorcontrib><creatorcontrib>Lou, Jihan</creatorcontrib><creatorcontrib>Shen, Si</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Tang, Longfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Guojiang</au><au>Zhu, Linfeng</au><au>Lou, Jihan</au><au>Shen, Si</au><au>Liu, Zhi</au><au>Tang, Longfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Multi-Pedestrian Tracking in Vertical View via Siamese Convolution Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>42718</spage><epage>42725</epage><pages>42718-42725</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Target tracking has become one of the research hotspots in the field of computer vision in recent years. In this paper, a new intelligent algorithm of infrared multi-pedestrian tracking in vertical view is proposed. In the algorithm, the pedestrians in the infrared image can be quickly detected and located with the method of the Faster Regions with CNN features (RCNN) and then are tracked with the improved Siamese network. The tracking method based on Siamese network transforms the tracking problem into a similarity verification problem and evaluates the similarity score between new frame feature and target frame feature by convolution network. The candidate region with the highest score is considered as the current position of the target. In this paper, the Siamese network is combined with Faster RCNN for multi-pedestrian tracking. In addition, the tracking results of adjacent frames are introduced into the similarity evaluation of current frames to improve the tracking accuracy when the pedestrian posture changes. The experimental results show that the algorithm has good robustness and tracking result and achieves competitive performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2892469</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7746-9294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.42718-42725
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8610285
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computer vision
Convolution
convolution network
Feature extraction
infrared detection
Infrared imagery
Infrared tracking
pedestrian tracking
Pedestrians
Proposals
Real-time systems
Siamese network
Similarity
Target tracking
Tracking
Tracking problem
Training
title Infrared Multi-Pedestrian Tracking in Vertical View via Siamese Convolution Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Multi-Pedestrian%20Tracking%20in%20Vertical%20View%20via%20Siamese%20Convolution%20Network&rft.jtitle=IEEE%20access&rft.au=Shen,%20Guojiang&rft.date=2019&rft.volume=7&rft.spage=42718&rft.epage=42725&rft.pages=42718-42725&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2892469&rft_dat=%3Cproquest_ieee_%3E2455636187%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455636187&rft_id=info:pmid/&rft_ieee_id=8610285&rft_doaj_id=oai_doaj_org_article_3466ef78b5be4a55af35129885efe951&rfr_iscdi=true