Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning

State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.8754-8762
Hauptverfasser: Li, Yuanyuan, Zhong, Shouming, Zhong, Qishui, Shi, Kaibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8762
container_issue
container_start_page 8754
container_title IEEE access
container_volume 7
creator Li, Yuanyuan
Zhong, Shouming
Zhong, Qishui
Shi, Kaibo
description State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions.
doi_str_mv 10.1109/ACCESS.2019.2891063
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8603722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8603722</ieee_id><doaj_id>oai_doaj_org_article_9485a80bde234eb5b41dd41e4b7a3472</doaj_id><sourcerecordid>2455601751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</originalsourceid><addsrcrecordid>eNpNUT1vwjAQjapWKqL8ApZInUPt2I7tkSJaIlF1oJ0tJz5DUIipYwb-fU2DUG-50937OOklyRSjGcZIvswXi-VmM8sRlrNcSIwKcpeMclzIjDBS3P-bH5NJ3-9RLBFXjI-Sct2EXXM6ZKXr0lcdAvhzugk6QOpsugLdhl364bomON902wjpwaQRu-x6OFQtpGvQvounp-TB6raHybWPk--35ddila0_38vFfJ3VFImQcQtcUiKA61oIILUwsmCyZgBWFxIqrisCxlRgWW2IhaLiWBLGLCBra07GSTnoGqf36uibg_Zn5XSj_hbOb5X2oalbUJIKpgWqDOSEQsUqio2hGGg0IZTnUet50Dp693OCPqi9O_kuvq9yyliBMGc4osiAqr3rew_25oqRukSghgjUJQJ1jSCypgOrAYAbQxSI8Dwnv-JegmU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455601751</pqid></control><display><type>article</type><title>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Yuanyuan ; Zhong, Shouming ; Zhong, Qishui ; Shi, Kaibo</creator><creatorcontrib>Li, Yuanyuan ; Zhong, Shouming ; Zhong, Qishui ; Shi, Kaibo</creatorcontrib><description>State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2891063</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Correlation analysis ; Data models ; Ensemble learning ; Estimation ; gray relational analysis ; Integrated circuit modeling ; Lithium-ion batteries ; Lithium-ion battery ; Machine learning ; multi-feature ; Predictive models ; Rechargeable batteries ; state of health ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.8754-8762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</citedby><cites>FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</cites><orcidid>0000-0002-0973-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8603722$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zhong, Shouming</creatorcontrib><creatorcontrib>Zhong, Qishui</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><title>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions.</description><subject>Correlation analysis</subject><subject>Data models</subject><subject>Ensemble learning</subject><subject>Estimation</subject><subject>gray relational analysis</subject><subject>Integrated circuit modeling</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Machine learning</subject><subject>multi-feature</subject><subject>Predictive models</subject><subject>Rechargeable batteries</subject><subject>state of health</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUT1vwjAQjapWKqL8ApZInUPt2I7tkSJaIlF1oJ0tJz5DUIipYwb-fU2DUG-50937OOklyRSjGcZIvswXi-VmM8sRlrNcSIwKcpeMclzIjDBS3P-bH5NJ3-9RLBFXjI-Sct2EXXM6ZKXr0lcdAvhzugk6QOpsugLdhl364bomON902wjpwaQRu-x6OFQtpGvQvounp-TB6raHybWPk--35ddila0_38vFfJ3VFImQcQtcUiKA61oIILUwsmCyZgBWFxIqrisCxlRgWW2IhaLiWBLGLCBra07GSTnoGqf36uibg_Zn5XSj_hbOb5X2oalbUJIKpgWqDOSEQsUqio2hGGg0IZTnUet50Dp693OCPqi9O_kuvq9yyliBMGc4osiAqr3rew_25oqRukSghgjUJQJ1jSCypgOrAYAbQxSI8Dwnv-JegmU</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Yuanyuan</creator><creator>Zhong, Shouming</creator><creator>Zhong, Qishui</creator><creator>Shi, Kaibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0973-2481</orcidid></search><sort><creationdate>2019</creationdate><title>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</title><author>Li, Yuanyuan ; Zhong, Shouming ; Zhong, Qishui ; Shi, Kaibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation analysis</topic><topic>Data models</topic><topic>Ensemble learning</topic><topic>Estimation</topic><topic>gray relational analysis</topic><topic>Integrated circuit modeling</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Machine learning</topic><topic>multi-feature</topic><topic>Predictive models</topic><topic>Rechargeable batteries</topic><topic>state of health</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zhong, Shouming</creatorcontrib><creatorcontrib>Zhong, Qishui</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuanyuan</au><au>Zhong, Shouming</au><au>Zhong, Qishui</au><au>Shi, Kaibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>8754</spage><epage>8762</epage><pages>8754-8762</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2891063</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0973-2481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.8754-8762
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8603722
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Correlation analysis
Data models
Ensemble learning
Estimation
gray relational analysis
Integrated circuit modeling
Lithium-ion batteries
Lithium-ion battery
Machine learning
multi-feature
Predictive models
Rechargeable batteries
state of health
Training
title Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium-Ion%20Battery%20State%20of%20Health%20Monitoring%20Based%20on%20Ensemble%20Learning&rft.jtitle=IEEE%20access&rft.au=Li,%20Yuanyuan&rft.date=2019&rft.volume=7&rft.spage=8754&rft.epage=8762&rft.pages=8754-8762&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2891063&rft_dat=%3Cproquest_ieee_%3E2455601751%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455601751&rft_id=info:pmid/&rft_ieee_id=8603722&rft_doaj_id=oai_doaj_org_article_9485a80bde234eb5b41dd41e4b7a3472&rfr_iscdi=true