Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning
State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.8754-8762 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8762 |
---|---|
container_issue | |
container_start_page | 8754 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Yuanyuan Zhong, Shouming Zhong, Qishui Shi, Kaibo |
description | State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions. |
doi_str_mv | 10.1109/ACCESS.2019.2891063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8603722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8603722</ieee_id><doaj_id>oai_doaj_org_article_9485a80bde234eb5b41dd41e4b7a3472</doaj_id><sourcerecordid>2455601751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</originalsourceid><addsrcrecordid>eNpNUT1vwjAQjapWKqL8ApZInUPt2I7tkSJaIlF1oJ0tJz5DUIipYwb-fU2DUG-50937OOklyRSjGcZIvswXi-VmM8sRlrNcSIwKcpeMclzIjDBS3P-bH5NJ3-9RLBFXjI-Sct2EXXM6ZKXr0lcdAvhzugk6QOpsugLdhl364bomON902wjpwaQRu-x6OFQtpGvQvounp-TB6raHybWPk--35ddila0_38vFfJ3VFImQcQtcUiKA61oIILUwsmCyZgBWFxIqrisCxlRgWW2IhaLiWBLGLCBra07GSTnoGqf36uibg_Zn5XSj_hbOb5X2oalbUJIKpgWqDOSEQsUqio2hGGg0IZTnUet50Dp693OCPqi9O_kuvq9yyliBMGc4osiAqr3rew_25oqRukSghgjUJQJ1jSCypgOrAYAbQxSI8Dwnv-JegmU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455601751</pqid></control><display><type>article</type><title>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Yuanyuan ; Zhong, Shouming ; Zhong, Qishui ; Shi, Kaibo</creator><creatorcontrib>Li, Yuanyuan ; Zhong, Shouming ; Zhong, Qishui ; Shi, Kaibo</creatorcontrib><description>State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2891063</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Correlation analysis ; Data models ; Ensemble learning ; Estimation ; gray relational analysis ; Integrated circuit modeling ; Lithium-ion batteries ; Lithium-ion battery ; Machine learning ; multi-feature ; Predictive models ; Rechargeable batteries ; state of health ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.8754-8762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</citedby><cites>FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</cites><orcidid>0000-0002-0973-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8603722$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zhong, Shouming</creatorcontrib><creatorcontrib>Zhong, Qishui</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><title>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions.</description><subject>Correlation analysis</subject><subject>Data models</subject><subject>Ensemble learning</subject><subject>Estimation</subject><subject>gray relational analysis</subject><subject>Integrated circuit modeling</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Machine learning</subject><subject>multi-feature</subject><subject>Predictive models</subject><subject>Rechargeable batteries</subject><subject>state of health</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUT1vwjAQjapWKqL8ApZInUPt2I7tkSJaIlF1oJ0tJz5DUIipYwb-fU2DUG-50937OOklyRSjGcZIvswXi-VmM8sRlrNcSIwKcpeMclzIjDBS3P-bH5NJ3-9RLBFXjI-Sct2EXXM6ZKXr0lcdAvhzugk6QOpsugLdhl364bomON902wjpwaQRu-x6OFQtpGvQvounp-TB6raHybWPk--35ddila0_38vFfJ3VFImQcQtcUiKA61oIILUwsmCyZgBWFxIqrisCxlRgWW2IhaLiWBLGLCBra07GSTnoGqf36uibg_Zn5XSj_hbOb5X2oalbUJIKpgWqDOSEQsUqio2hGGg0IZTnUet50Dp693OCPqi9O_kuvq9yyliBMGc4osiAqr3rew_25oqRukSghgjUJQJ1jSCypgOrAYAbQxSI8Dwnv-JegmU</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Yuanyuan</creator><creator>Zhong, Shouming</creator><creator>Zhong, Qishui</creator><creator>Shi, Kaibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0973-2481</orcidid></search><sort><creationdate>2019</creationdate><title>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</title><author>Li, Yuanyuan ; Zhong, Shouming ; Zhong, Qishui ; Shi, Kaibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7fe79438e7ac88e3c8d9659c5eefa69eb7ab3eddbef5cd3fe6b719355fe0ffc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation analysis</topic><topic>Data models</topic><topic>Ensemble learning</topic><topic>Estimation</topic><topic>gray relational analysis</topic><topic>Integrated circuit modeling</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Machine learning</topic><topic>multi-feature</topic><topic>Predictive models</topic><topic>Rechargeable batteries</topic><topic>state of health</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zhong, Shouming</creatorcontrib><creatorcontrib>Zhong, Qishui</creatorcontrib><creatorcontrib>Shi, Kaibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuanyuan</au><au>Zhong, Shouming</au><au>Zhong, Qishui</au><au>Shi, Kaibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>8754</spage><epage>8762</epage><pages>8754-8762</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>State-of-health (SOH) estimation is critical for the battery management system. With autonomous ability and superior nonlinear mapping capability, machine learning is now a hot topic in this field. The training sample set of current machine learning methods based on single learner is often the regional data, which leads to a small range of data acquisition and affects the generalization ability of the model. Regard this issue, the idea of ensemble learning is considered, and by generating differential data samples and synthesizing the output of a series of base learners, a good learning performance can be achieved. Furthermore, gray relational analysis is used for feature correlation analysis. In this paper, NASA battery data sets are used to verify and validate the performance of the proposed method, which indicated an enhanced accuracy of the results based on the ensemble learning method. The proposed battery healthy assessment model based on ensemble learning can be concluded to provide highly accurate and stable SOH predictions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2891063</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0973-2481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.8754-8762 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8603722 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Correlation analysis Data models Ensemble learning Estimation gray relational analysis Integrated circuit modeling Lithium-ion batteries Lithium-ion battery Machine learning multi-feature Predictive models Rechargeable batteries state of health Training |
title | Lithium-Ion Battery State of Health Monitoring Based on Ensemble Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium-Ion%20Battery%20State%20of%20Health%20Monitoring%20Based%20on%20Ensemble%20Learning&rft.jtitle=IEEE%20access&rft.au=Li,%20Yuanyuan&rft.date=2019&rft.volume=7&rft.spage=8754&rft.epage=8762&rft.pages=8754-8762&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2891063&rft_dat=%3Cproquest_ieee_%3E2455601751%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455601751&rft_id=info:pmid/&rft_ieee_id=8603722&rft_doaj_id=oai_doaj_org_article_9485a80bde234eb5b41dd41e4b7a3472&rfr_iscdi=true |