Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring

Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2019-01, Vol.6 (1), p.64-74
Hauptverfasser: Sheng, Zhengguo, Pfersich, Saskia, Eldridge, Alice, Zhou, Jianshan, Tian, Daxin, Leung, Victor C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 64
container_title IEEE/CAA journal of automatica sinica
container_volume 6
creator Sheng, Zhengguo
Pfersich, Saskia
Eldridge, Alice
Zhou, Jianshan
Tian, Daxin
Leung, Victor C. M.
description Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions.
doi_str_mv 10.1109/JAS.2019.1911324
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8600790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8600790</ieee_id><sourcerecordid>2164829618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5d7ab1a1450062ea4bd6402621ce802be378012e847928808e02d5a6b9f701843</originalsourceid><addsrcrecordid>eNpFkEtrwzAQhEVpoaHNvdCLoWenu7IsS8cQ-iRQ6IMehWyvg9PEciWb0n9fhYT0tAszszt8jF0hzBBB3z7P32YcUM9QI2ZcnLAJz7hONS_E6XGX8pxNQ1gDAPK8kFpM2Otn62lDISS2cmMY2ioJ1AXnk46GH-e_otDVCdUrSiq37ceh7VZJE3Vv-7b-T21d1w7OR_WSnTV2E2h6mBfs4_7uffGYLl8enhbzZVplUg1pXhe2RIsiB5CcrChrKYBLjhUp4CVlhYo9SYlCc6VAEfA6t7LUTQGoRHbBbvZ3e---RwqDWbvRd_Gl4SiF4lqiii7YuyrvQvDUmN63W-t_DYLZwTMRntnBMwd4MXK9j7REdLQrCVBoyP4AhGxp-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164829618</pqid></control><display><type>article</type><title>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Sheng, Zhengguo ; Pfersich, Saskia ; Eldridge, Alice ; Zhou, Jianshan ; Tian, Daxin ; Leung, Victor C. M.</creator><creatorcontrib>Sheng, Zhengguo ; Pfersich, Saskia ; Eldridge, Alice ; Zhou, Jianshan ; Tian, Daxin ; Leung, Victor C. M.</creatorcontrib><description>Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2019.1911324</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Acoustic noise ; Acoustic sensors ; Acoustics ; Audio data ; Biodiversity ; Computing costs ; Ecological monitoring ; Edge computing ; Energy management ; Hardware ; Low noise ; Microcontrollers ; Microphones ; Monitoring ; Power consumption ; Power management ; Recording ; Relaying ; Remote monitoring ; Remote sensors ; Sensors ; Transmission ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE/CAA journal of automatica sinica, 2019-01, Vol.6 (1), p.64-74</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5d7ab1a1450062ea4bd6402621ce802be378012e847928808e02d5a6b9f701843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8600790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8600790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheng, Zhengguo</creatorcontrib><creatorcontrib>Pfersich, Saskia</creatorcontrib><creatorcontrib>Eldridge, Alice</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><title>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description>Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions.</description><subject>Acoustic noise</subject><subject>Acoustic sensors</subject><subject>Acoustics</subject><subject>Audio data</subject><subject>Biodiversity</subject><subject>Computing costs</subject><subject>Ecological monitoring</subject><subject>Edge computing</subject><subject>Energy management</subject><subject>Hardware</subject><subject>Low noise</subject><subject>Microcontrollers</subject><subject>Microphones</subject><subject>Monitoring</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Recording</subject><subject>Relaying</subject><subject>Remote monitoring</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>Transmission</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEtrwzAQhEVpoaHNvdCLoWenu7IsS8cQ-iRQ6IMehWyvg9PEciWb0n9fhYT0tAszszt8jF0hzBBB3z7P32YcUM9QI2ZcnLAJz7hONS_E6XGX8pxNQ1gDAPK8kFpM2Otn62lDISS2cmMY2ioJ1AXnk46GH-e_otDVCdUrSiq37ceh7VZJE3Vv-7b-T21d1w7OR_WSnTV2E2h6mBfs4_7uffGYLl8enhbzZVplUg1pXhe2RIsiB5CcrChrKYBLjhUp4CVlhYo9SYlCc6VAEfA6t7LUTQGoRHbBbvZ3e---RwqDWbvRd_Gl4SiF4lqiii7YuyrvQvDUmN63W-t_DYLZwTMRntnBMwd4MXK9j7REdLQrCVBoyP4AhGxp-A</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Sheng, Zhengguo</creator><creator>Pfersich, Saskia</creator><creator>Eldridge, Alice</creator><creator>Zhou, Jianshan</creator><creator>Tian, Daxin</creator><creator>Leung, Victor C. M.</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201901</creationdate><title>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</title><author>Sheng, Zhengguo ; Pfersich, Saskia ; Eldridge, Alice ; Zhou, Jianshan ; Tian, Daxin ; Leung, Victor C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5d7ab1a1450062ea4bd6402621ce802be378012e847928808e02d5a6b9f701843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic noise</topic><topic>Acoustic sensors</topic><topic>Acoustics</topic><topic>Audio data</topic><topic>Biodiversity</topic><topic>Computing costs</topic><topic>Ecological monitoring</topic><topic>Edge computing</topic><topic>Energy management</topic><topic>Hardware</topic><topic>Low noise</topic><topic>Microcontrollers</topic><topic>Microphones</topic><topic>Monitoring</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Recording</topic><topic>Relaying</topic><topic>Remote monitoring</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>Transmission</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Zhengguo</creatorcontrib><creatorcontrib>Pfersich, Saskia</creatorcontrib><creatorcontrib>Eldridge, Alice</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheng, Zhengguo</au><au>Pfersich, Saskia</au><au>Eldridge, Alice</au><au>Zhou, Jianshan</au><au>Tian, Daxin</au><au>Leung, Victor C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2019-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>64</spage><epage>74</epage><pages>64-74</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2019.1911324</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2019-01, Vol.6 (1), p.64-74
issn 2329-9266
2329-9274
language eng
recordid cdi_ieee_primary_8600790
source IEEE Electronic Library (IEL)
subjects Acoustic noise
Acoustic sensors
Acoustics
Audio data
Biodiversity
Computing costs
Ecological monitoring
Edge computing
Energy management
Hardware
Low noise
Microcontrollers
Microphones
Monitoring
Power consumption
Power management
Recording
Relaying
Remote monitoring
Remote sensors
Sensors
Transmission
Wireless communication
Wireless sensor networks
title Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20acoustic%20sensor%20networks%20and%20edge%20computing%20for%20rapid%20acoustic%20monitoring&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Sheng,%20Zhengguo&rft.date=2019-01&rft.volume=6&rft.issue=1&rft.spage=64&rft.epage=74&rft.pages=64-74&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2019.1911324&rft_dat=%3Cproquest_RIE%3E2164829618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164829618&rft_id=info:pmid/&rft_ieee_id=8600790&rfr_iscdi=true