Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring
Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2019-01, Vol.6 (1), p.64-74 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 64 |
container_title | IEEE/CAA journal of automatica sinica |
container_volume | 6 |
creator | Sheng, Zhengguo Pfersich, Saskia Eldridge, Alice Zhou, Jianshan Tian, Daxin Leung, Victor C. M. |
description | Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions. |
doi_str_mv | 10.1109/JAS.2019.1911324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8600790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8600790</ieee_id><sourcerecordid>2164829618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5d7ab1a1450062ea4bd6402621ce802be378012e847928808e02d5a6b9f701843</originalsourceid><addsrcrecordid>eNpFkEtrwzAQhEVpoaHNvdCLoWenu7IsS8cQ-iRQ6IMehWyvg9PEciWb0n9fhYT0tAszszt8jF0hzBBB3z7P32YcUM9QI2ZcnLAJz7hONS_E6XGX8pxNQ1gDAPK8kFpM2Otn62lDISS2cmMY2ioJ1AXnk46GH-e_otDVCdUrSiq37ceh7VZJE3Vv-7b-T21d1w7OR_WSnTV2E2h6mBfs4_7uffGYLl8enhbzZVplUg1pXhe2RIsiB5CcrChrKYBLjhUp4CVlhYo9SYlCc6VAEfA6t7LUTQGoRHbBbvZ3e---RwqDWbvRd_Gl4SiF4lqiii7YuyrvQvDUmN63W-t_DYLZwTMRntnBMwd4MXK9j7REdLQrCVBoyP4AhGxp-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164829618</pqid></control><display><type>article</type><title>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Sheng, Zhengguo ; Pfersich, Saskia ; Eldridge, Alice ; Zhou, Jianshan ; Tian, Daxin ; Leung, Victor C. M.</creator><creatorcontrib>Sheng, Zhengguo ; Pfersich, Saskia ; Eldridge, Alice ; Zhou, Jianshan ; Tian, Daxin ; Leung, Victor C. M.</creatorcontrib><description>Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2019.1911324</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Acoustic noise ; Acoustic sensors ; Acoustics ; Audio data ; Biodiversity ; Computing costs ; Ecological monitoring ; Edge computing ; Energy management ; Hardware ; Low noise ; Microcontrollers ; Microphones ; Monitoring ; Power consumption ; Power management ; Recording ; Relaying ; Remote monitoring ; Remote sensors ; Sensors ; Transmission ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE/CAA journal of automatica sinica, 2019-01, Vol.6 (1), p.64-74</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5d7ab1a1450062ea4bd6402621ce802be378012e847928808e02d5a6b9f701843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8600790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8600790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheng, Zhengguo</creatorcontrib><creatorcontrib>Pfersich, Saskia</creatorcontrib><creatorcontrib>Eldridge, Alice</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><title>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description>Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions.</description><subject>Acoustic noise</subject><subject>Acoustic sensors</subject><subject>Acoustics</subject><subject>Audio data</subject><subject>Biodiversity</subject><subject>Computing costs</subject><subject>Ecological monitoring</subject><subject>Edge computing</subject><subject>Energy management</subject><subject>Hardware</subject><subject>Low noise</subject><subject>Microcontrollers</subject><subject>Microphones</subject><subject>Monitoring</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Recording</subject><subject>Relaying</subject><subject>Remote monitoring</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>Transmission</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEtrwzAQhEVpoaHNvdCLoWenu7IsS8cQ-iRQ6IMehWyvg9PEciWb0n9fhYT0tAszszt8jF0hzBBB3z7P32YcUM9QI2ZcnLAJz7hONS_E6XGX8pxNQ1gDAPK8kFpM2Otn62lDISS2cmMY2ioJ1AXnk46GH-e_otDVCdUrSiq37ceh7VZJE3Vv-7b-T21d1w7OR_WSnTV2E2h6mBfs4_7uffGYLl8enhbzZVplUg1pXhe2RIsiB5CcrChrKYBLjhUp4CVlhYo9SYlCc6VAEfA6t7LUTQGoRHbBbvZ3e---RwqDWbvRd_Gl4SiF4lqiii7YuyrvQvDUmN63W-t_DYLZwTMRntnBMwd4MXK9j7REdLQrCVBoyP4AhGxp-A</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Sheng, Zhengguo</creator><creator>Pfersich, Saskia</creator><creator>Eldridge, Alice</creator><creator>Zhou, Jianshan</creator><creator>Tian, Daxin</creator><creator>Leung, Victor C. M.</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201901</creationdate><title>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</title><author>Sheng, Zhengguo ; Pfersich, Saskia ; Eldridge, Alice ; Zhou, Jianshan ; Tian, Daxin ; Leung, Victor C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5d7ab1a1450062ea4bd6402621ce802be378012e847928808e02d5a6b9f701843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic noise</topic><topic>Acoustic sensors</topic><topic>Acoustics</topic><topic>Audio data</topic><topic>Biodiversity</topic><topic>Computing costs</topic><topic>Ecological monitoring</topic><topic>Edge computing</topic><topic>Energy management</topic><topic>Hardware</topic><topic>Low noise</topic><topic>Microcontrollers</topic><topic>Microphones</topic><topic>Monitoring</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Recording</topic><topic>Relaying</topic><topic>Remote monitoring</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>Transmission</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Zhengguo</creatorcontrib><creatorcontrib>Pfersich, Saskia</creatorcontrib><creatorcontrib>Eldridge, Alice</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheng, Zhengguo</au><au>Pfersich, Saskia</au><au>Eldridge, Alice</au><au>Zhou, Jianshan</au><au>Tian, Daxin</au><au>Leung, Victor C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2019-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>64</spage><epage>74</epage><pages>64-74</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring. The scale of the data involved requires automated methods, however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive, hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis. Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server. Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2019.1911324</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9266 |
ispartof | IEEE/CAA journal of automatica sinica, 2019-01, Vol.6 (1), p.64-74 |
issn | 2329-9266 2329-9274 |
language | eng |
recordid | cdi_ieee_primary_8600790 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic noise Acoustic sensors Acoustics Audio data Biodiversity Computing costs Ecological monitoring Edge computing Energy management Hardware Low noise Microcontrollers Microphones Monitoring Power consumption Power management Recording Relaying Remote monitoring Remote sensors Sensors Transmission Wireless communication Wireless sensor networks |
title | Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20acoustic%20sensor%20networks%20and%20edge%20computing%20for%20rapid%20acoustic%20monitoring&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Sheng,%20Zhengguo&rft.date=2019-01&rft.volume=6&rft.issue=1&rft.spage=64&rft.epage=74&rft.pages=64-74&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2019.1911324&rft_dat=%3Cproquest_RIE%3E2164829618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164829618&rft_id=info:pmid/&rft_ieee_id=8600790&rfr_iscdi=true |