Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones
This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo image...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2019-04, Vol.54 (4), p.1106-1119 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1119 |
---|---|
container_issue | 4 |
container_start_page | 1106 |
container_title | IEEE journal of solid-state circuits |
container_volume | 54 |
creator | Suleiman, Amr Zhang, Zhengdong Carlone, Luca Karaman, Sertac Sze, Vivienne |
description | This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1 \times . Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process 752\times 480 stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC). |
doi_str_mv | 10.1109/JSSC.2018.2886342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8600375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8600375</ieee_id><sourcerecordid>2200823051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPiy4HPqXpLNxrdSrVaKBVsvb2GaTEpKkq27idJ_74YWH4aZYc45Ax8h15yNOGfJ3ctyORkJxvVIaK1kKE7IgEeRDngsv07JgPlTkAjGzsmFc1u_hqHmA_L7Cj-lae7pmIqg_qTTrqr2dNa0uLHQYk7fEKpgVdZIP0rX-XnWoG1LqOgiNzW2dk_HWYYVermxtPA17lrTmNp0jvbpG2j9B2oKvzWGPljToLskZwVUDq-OfUjep4-ryXMwXzzNJuN5kEmp2gCYKjLgAJlQRZQnIhYJRJCoLIwzVaxVztYAa4wEKF8slFDwKMkZiDzWCHJIbg-5O2u-O3RtujWdbfzLVHgaWkgWca_iB1VmjXMWi3RnyxrsPuUs7fmmPd-055se-XrPzcFTIuK_XivGZBzJP6eId9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200823051</pqid></control><display><type>article</type><title>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</title><source>IEEE Electronic Library (IEL)</source><creator>Suleiman, Amr ; Zhang, Zhengdong ; Carlone, Luca ; Karaman, Sertac ; Sze, Vivienne</creator><creatorcontrib>Suleiman, Amr ; Zhang, Zhengdong ; Carlone, Luca ; Karaman, Sertac ; Sze, Vivienne</creatorcontrib><description><![CDATA[This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process <inline-formula> <tex-math notation="LaTeX">752\times 480 </tex-math></inline-formula> stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC).]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2018.2886342</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Augmented reality ; Autonomous navigation ; Autonomous robots ; Cameras ; CMOS ; Drones ; Energy consumption ; Energy management ; Feature extraction ; Frames per second ; Integrated circuits ; Localization ; mapping ; nano drones ; navigation ; Odometers ; Optimization ; Portable equipment ; Power consumption ; Power management ; Real time ; Real-time systems ; simultaneous localization and mapping (SLAM) ; Virtual reality ; visual-inertial odometry (VIO)</subject><ispartof>IEEE journal of solid-state circuits, 2019-04, Vol.54 (4), p.1106-1119</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</citedby><cites>FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</cites><orcidid>0000-0003-3669-4318 ; 0000-0003-4841-3990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8600375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8600375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suleiman, Amr</creatorcontrib><creatorcontrib>Zhang, Zhengdong</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><creatorcontrib>Sze, Vivienne</creatorcontrib><title>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process <inline-formula> <tex-math notation="LaTeX">752\times 480 </tex-math></inline-formula> stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC).]]></description><subject>Algorithms</subject><subject>Augmented reality</subject><subject>Autonomous navigation</subject><subject>Autonomous robots</subject><subject>Cameras</subject><subject>CMOS</subject><subject>Drones</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Feature extraction</subject><subject>Frames per second</subject><subject>Integrated circuits</subject><subject>Localization</subject><subject>mapping</subject><subject>nano drones</subject><subject>navigation</subject><subject>Odometers</subject><subject>Optimization</subject><subject>Portable equipment</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>simultaneous localization and mapping (SLAM)</subject><subject>Virtual reality</subject><subject>visual-inertial odometry (VIO)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhRdRsFZ_gPiy4HPqXpLNxrdSrVaKBVsvb2GaTEpKkq27idJ_74YWH4aZYc45Ax8h15yNOGfJ3ctyORkJxvVIaK1kKE7IgEeRDngsv07JgPlTkAjGzsmFc1u_hqHmA_L7Cj-lae7pmIqg_qTTrqr2dNa0uLHQYk7fEKpgVdZIP0rX-XnWoG1LqOgiNzW2dk_HWYYVermxtPA17lrTmNp0jvbpG2j9B2oKvzWGPljToLskZwVUDq-OfUjep4-ryXMwXzzNJuN5kEmp2gCYKjLgAJlQRZQnIhYJRJCoLIwzVaxVztYAa4wEKF8slFDwKMkZiDzWCHJIbg-5O2u-O3RtujWdbfzLVHgaWkgWca_iB1VmjXMWi3RnyxrsPuUs7fmmPd-055se-XrPzcFTIuK_XivGZBzJP6eId9Y</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Suleiman, Amr</creator><creator>Zhang, Zhengdong</creator><creator>Carlone, Luca</creator><creator>Karaman, Sertac</creator><creator>Sze, Vivienne</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3669-4318</orcidid><orcidid>https://orcid.org/0000-0003-4841-3990</orcidid></search><sort><creationdate>20190401</creationdate><title>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</title><author>Suleiman, Amr ; Zhang, Zhengdong ; Carlone, Luca ; Karaman, Sertac ; Sze, Vivienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Augmented reality</topic><topic>Autonomous navigation</topic><topic>Autonomous robots</topic><topic>Cameras</topic><topic>CMOS</topic><topic>Drones</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Feature extraction</topic><topic>Frames per second</topic><topic>Integrated circuits</topic><topic>Localization</topic><topic>mapping</topic><topic>nano drones</topic><topic>navigation</topic><topic>Odometers</topic><topic>Optimization</topic><topic>Portable equipment</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>simultaneous localization and mapping (SLAM)</topic><topic>Virtual reality</topic><topic>visual-inertial odometry (VIO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suleiman, Amr</creatorcontrib><creatorcontrib>Zhang, Zhengdong</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><creatorcontrib>Sze, Vivienne</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suleiman, Amr</au><au>Zhang, Zhengdong</au><au>Carlone, Luca</au><au>Karaman, Sertac</au><au>Sze, Vivienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>54</volume><issue>4</issue><spage>1106</spage><epage>1119</epage><pages>1106-1119</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process <inline-formula> <tex-math notation="LaTeX">752\times 480 </tex-math></inline-formula> stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2018.2886342</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3669-4318</orcidid><orcidid>https://orcid.org/0000-0003-4841-3990</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2019-04, Vol.54 (4), p.1106-1119 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_8600375 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Augmented reality Autonomous navigation Autonomous robots Cameras CMOS Drones Energy consumption Energy management Feature extraction Frames per second Integrated circuits Localization mapping nano drones navigation Odometers Optimization Portable equipment Power consumption Power management Real time Real-time systems simultaneous localization and mapping (SLAM) Virtual reality visual-inertial odometry (VIO) |
title | Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Navion:%20A%202-mW%20Fully%20Integrated%20Real-Time%20Visual-Inertial%20Odometry%20Accelerator%20for%20Autonomous%20Navigation%20of%20Nano%20Drones&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Suleiman,%20Amr&rft.date=2019-04-01&rft.volume=54&rft.issue=4&rft.spage=1106&rft.epage=1119&rft.pages=1106-1119&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2018.2886342&rft_dat=%3Cproquest_RIE%3E2200823051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200823051&rft_id=info:pmid/&rft_ieee_id=8600375&rfr_iscdi=true |