Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones

This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2019-04, Vol.54 (4), p.1106-1119
Hauptverfasser: Suleiman, Amr, Zhang, Zhengdong, Carlone, Luca, Karaman, Sertac, Sze, Vivienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1119
container_issue 4
container_start_page 1106
container_title IEEE journal of solid-state circuits
container_volume 54
creator Suleiman, Amr
Zhang, Zhengdong
Carlone, Luca
Karaman, Sertac
Sze, Vivienne
description This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1 \times . Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process 752\times 480 stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC).
doi_str_mv 10.1109/JSSC.2018.2886342
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8600375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8600375</ieee_id><sourcerecordid>2200823051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPiy4HPqXpLNxrdSrVaKBVsvb2GaTEpKkq27idJ_74YWH4aZYc45Ax8h15yNOGfJ3ctyORkJxvVIaK1kKE7IgEeRDngsv07JgPlTkAjGzsmFc1u_hqHmA_L7Cj-lae7pmIqg_qTTrqr2dNa0uLHQYk7fEKpgVdZIP0rX-XnWoG1LqOgiNzW2dk_HWYYVermxtPA17lrTmNp0jvbpG2j9B2oKvzWGPljToLskZwVUDq-OfUjep4-ryXMwXzzNJuN5kEmp2gCYKjLgAJlQRZQnIhYJRJCoLIwzVaxVztYAa4wEKF8slFDwKMkZiDzWCHJIbg-5O2u-O3RtujWdbfzLVHgaWkgWca_iB1VmjXMWi3RnyxrsPuUs7fmmPd-055se-XrPzcFTIuK_XivGZBzJP6eId9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200823051</pqid></control><display><type>article</type><title>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</title><source>IEEE Electronic Library (IEL)</source><creator>Suleiman, Amr ; Zhang, Zhengdong ; Carlone, Luca ; Karaman, Sertac ; Sze, Vivienne</creator><creatorcontrib>Suleiman, Amr ; Zhang, Zhengdong ; Carlone, Luca ; Karaman, Sertac ; Sze, Vivienne</creatorcontrib><description><![CDATA[This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process <inline-formula> <tex-math notation="LaTeX">752\times 480 </tex-math></inline-formula> stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC).]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2018.2886342</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Augmented reality ; Autonomous navigation ; Autonomous robots ; Cameras ; CMOS ; Drones ; Energy consumption ; Energy management ; Feature extraction ; Frames per second ; Integrated circuits ; Localization ; mapping ; nano drones ; navigation ; Odometers ; Optimization ; Portable equipment ; Power consumption ; Power management ; Real time ; Real-time systems ; simultaneous localization and mapping (SLAM) ; Virtual reality ; visual-inertial odometry (VIO)</subject><ispartof>IEEE journal of solid-state circuits, 2019-04, Vol.54 (4), p.1106-1119</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</citedby><cites>FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</cites><orcidid>0000-0003-3669-4318 ; 0000-0003-4841-3990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8600375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8600375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suleiman, Amr</creatorcontrib><creatorcontrib>Zhang, Zhengdong</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><creatorcontrib>Sze, Vivienne</creatorcontrib><title>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process <inline-formula> <tex-math notation="LaTeX">752\times 480 </tex-math></inline-formula> stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC).]]></description><subject>Algorithms</subject><subject>Augmented reality</subject><subject>Autonomous navigation</subject><subject>Autonomous robots</subject><subject>Cameras</subject><subject>CMOS</subject><subject>Drones</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Feature extraction</subject><subject>Frames per second</subject><subject>Integrated circuits</subject><subject>Localization</subject><subject>mapping</subject><subject>nano drones</subject><subject>navigation</subject><subject>Odometers</subject><subject>Optimization</subject><subject>Portable equipment</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>simultaneous localization and mapping (SLAM)</subject><subject>Virtual reality</subject><subject>visual-inertial odometry (VIO)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhRdRsFZ_gPiy4HPqXpLNxrdSrVaKBVsvb2GaTEpKkq27idJ_74YWH4aZYc45Ax8h15yNOGfJ3ctyORkJxvVIaK1kKE7IgEeRDngsv07JgPlTkAjGzsmFc1u_hqHmA_L7Cj-lae7pmIqg_qTTrqr2dNa0uLHQYk7fEKpgVdZIP0rX-XnWoG1LqOgiNzW2dk_HWYYVermxtPA17lrTmNp0jvbpG2j9B2oKvzWGPljToLskZwVUDq-OfUjep4-ryXMwXzzNJuN5kEmp2gCYKjLgAJlQRZQnIhYJRJCoLIwzVaxVztYAa4wEKF8slFDwKMkZiDzWCHJIbg-5O2u-O3RtujWdbfzLVHgaWkgWca_iB1VmjXMWi3RnyxrsPuUs7fmmPd-055se-XrPzcFTIuK_XivGZBzJP6eId9Y</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Suleiman, Amr</creator><creator>Zhang, Zhengdong</creator><creator>Carlone, Luca</creator><creator>Karaman, Sertac</creator><creator>Sze, Vivienne</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3669-4318</orcidid><orcidid>https://orcid.org/0000-0003-4841-3990</orcidid></search><sort><creationdate>20190401</creationdate><title>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</title><author>Suleiman, Amr ; Zhang, Zhengdong ; Carlone, Luca ; Karaman, Sertac ; Sze, Vivienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a06fca1aac26f5d92729a5a96c47c6fb6d0baabe52a652a043af159d0a2d78ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Augmented reality</topic><topic>Autonomous navigation</topic><topic>Autonomous robots</topic><topic>Cameras</topic><topic>CMOS</topic><topic>Drones</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Feature extraction</topic><topic>Frames per second</topic><topic>Integrated circuits</topic><topic>Localization</topic><topic>mapping</topic><topic>nano drones</topic><topic>navigation</topic><topic>Odometers</topic><topic>Optimization</topic><topic>Portable equipment</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>simultaneous localization and mapping (SLAM)</topic><topic>Virtual reality</topic><topic>visual-inertial odometry (VIO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suleiman, Amr</creatorcontrib><creatorcontrib>Zhang, Zhengdong</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Karaman, Sertac</creatorcontrib><creatorcontrib>Sze, Vivienne</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suleiman, Amr</au><au>Zhang, Zhengdong</au><au>Carlone, Luca</au><au>Karaman, Sertac</au><au>Sze, Vivienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>54</volume><issue>4</issue><spage>1106</spage><epage>1119</epage><pages>1106-1119</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This paper presents Navion, an energy-efficient accelerator for visual-inertial odometry (VIO) that enables autonomous navigation of miniaturized robots (e.g., nano drones), and virtual reality (VR)/augmented reality (AR) on portable devices. The chip uses inertial measurements and mono/stereo images to estimate the drone's trajectory and a 3-D map of the environment. This estimate is obtained by running a state-of-the-art VIO algorithm based on non-linear factor graph optimization, which requires large irregularly structured memories and heterogeneous computation flow. To reduce the energy consumption and footprint, the entire VIO system is fully integrated on-chip to eliminate costly off-chip processing and storage. This paper uses compression and exploits both structured and unstructured sparsity to reduce on-chip memory size by 4.1<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. Parallelism is used under tight area constraints to increase throughput by 43%. The chip is fabricated in 65-nm CMOS and can process <inline-formula> <tex-math notation="LaTeX">752\times 480 </tex-math></inline-formula> stereo images from EuRoC data set in real time at 20 frames per second (fps) consuming only an average power of 2 mW. At its peak performance, Navion can process stereo images at up to 171 fps and inertial measurements at up to 52 kHz, while consuming an average of 24 mW. The chip is configurable to maximize accuracy, throughput, and energy-efficiency tradeoffs and to adapt to different environments. To the best of our knowledge, this is the first fully integrated VIO system in an application-specified integrated circuit (ASIC).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2018.2886342</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3669-4318</orcidid><orcidid>https://orcid.org/0000-0003-4841-3990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2019-04, Vol.54 (4), p.1106-1119
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_8600375
source IEEE Electronic Library (IEL)
subjects Algorithms
Augmented reality
Autonomous navigation
Autonomous robots
Cameras
CMOS
Drones
Energy consumption
Energy management
Feature extraction
Frames per second
Integrated circuits
Localization
mapping
nano drones
navigation
Odometers
Optimization
Portable equipment
Power consumption
Power management
Real time
Real-time systems
simultaneous localization and mapping (SLAM)
Virtual reality
visual-inertial odometry (VIO)
title Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Navion:%20A%202-mW%20Fully%20Integrated%20Real-Time%20Visual-Inertial%20Odometry%20Accelerator%20for%20Autonomous%20Navigation%20of%20Nano%20Drones&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Suleiman,%20Amr&rft.date=2019-04-01&rft.volume=54&rft.issue=4&rft.spage=1106&rft.epage=1119&rft.pages=1106-1119&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2018.2886342&rft_dat=%3Cproquest_RIE%3E2200823051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200823051&rft_id=info:pmid/&rft_ieee_id=8600375&rfr_iscdi=true