Holistic VM Placement for Distributed Parallel Applications in Heterogeneous Clusters

In a heterogeneous cluster, virtual machine (VM) placement for a distributed parallel application is challenging due to numerous possible ways of placing the application and complexity of estimating the performance of the application. This study investigates a holistic VM placement technique for dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2021-09, Vol.14 (5), p.1411-1425
Hauptverfasser: Kim, Seontae, Pham, Nguyen, Baek, Woongki, Choi, Young-ri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1425
container_issue 5
container_start_page 1411
container_title IEEE transactions on services computing
container_volume 14
creator Kim, Seontae
Pham, Nguyen
Baek, Woongki
Choi, Young-ri
description In a heterogeneous cluster, virtual machine (VM) placement for a distributed parallel application is challenging due to numerous possible ways of placing the application and complexity of estimating the performance of the application. This study investigates a holistic VM placement technique for distributed parallel applications in a heterogeneous cluster, aiming to maximize the efficiency of the cluster and consequently reduce the costs for service providers and users. The proposed technique accommodates various factors that have an impact on performance in a combined manner. First, we analyze the effects of the heterogeneity of resources, different VM configurations, and interference between VMs on the performance of distributed parallel applications with a wide diversity of characteristics, including scientific and big data analytics applications. We then propose a placement technique that uses a machine learning algorithm to estimate the runtime of a distributed parallel application. To train a performance estimation model, a distributed parallel application is profiled against synthetic workloads that mostly utilize the dominant resource of the application, which strongly affects the application performance, reducing the profiling space dramatically. Through experimental and simulation studies, we show that the proposed placement technique can find good VM placement configurations for various workloads.
doi_str_mv 10.1109/TSC.2018.2890668
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8598959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598959</ieee_id><sourcerecordid>2579440008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b3f47a48bef48ac8e30e261fe694541d38139a27d8e739460d5e69842d1f4cc33</originalsourceid><addsrcrecordid>eNpNkM1LwzAYxoMoOKd3wUvAc2fSpG1yHPVjwsSBm9eQtW8lI2tqkh78783YEE_v1_M8L_wQuqVkRimRD-uPepYTKma5kKQsxRmaUMlkRlnFz__1l-gqhB0hZS6EnKDNwlkTomnw5xteWd3AHvqIO-fxY9p7sx0jtHilvbYWLJ4PgzWNjsb1AZseLyCCd1_QgxsDru0Y0hyu0UWnbYCbU52izfPTul5ky_eX13q-zBrGWMy2rOOV5mILHRe6EcAI5CXtoJS84LRlgjKp86oVUDHJS9IW6SR43tKONyljiu6PuYN33yOEqHZu9H16qfKikpwTQkRSkaOq8S4ED50avNlr_6MoUQd4KsFTB3jqBC9Z7o4WAwB_clFIIQvJfgEOrmr9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579440008</pqid></control><display><type>article</type><title>Holistic VM Placement for Distributed Parallel Applications in Heterogeneous Clusters</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Seontae ; Pham, Nguyen ; Baek, Woongki ; Choi, Young-ri</creator><creatorcontrib>Kim, Seontae ; Pham, Nguyen ; Baek, Woongki ; Choi, Young-ri</creatorcontrib><description>In a heterogeneous cluster, virtual machine (VM) placement for a distributed parallel application is challenging due to numerous possible ways of placing the application and complexity of estimating the performance of the application. This study investigates a holistic VM placement technique for distributed parallel applications in a heterogeneous cluster, aiming to maximize the efficiency of the cluster and consequently reduce the costs for service providers and users. The proposed technique accommodates various factors that have an impact on performance in a combined manner. First, we analyze the effects of the heterogeneity of resources, different VM configurations, and interference between VMs on the performance of distributed parallel applications with a wide diversity of characteristics, including scientific and big data analytics applications. We then propose a placement technique that uses a machine learning algorithm to estimate the runtime of a distributed parallel application. To train a performance estimation model, a distributed parallel application is profiled against synthetic workloads that mostly utilize the dominant resource of the application, which strongly affects the application performance, reducing the profiling space dramatically. Through experimental and simulation studies, we show that the proposed placement technique can find good VM placement configurations for various workloads.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2018.2890668</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Big Data ; Cloud computing ; Clusters ; Configurations ; distributed parallel applications ; Hardware ; Heterogeneity ; Heterogeneous clusters ; Interference ; Machine learning ; Machine learning algorithms ; machine learning based performance model ; Placement ; Runtime ; Sparks ; Virtual environments ; VM placement algorithm ; Workload ; Workloads</subject><ispartof>IEEE transactions on services computing, 2021-09, Vol.14 (5), p.1411-1425</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b3f47a48bef48ac8e30e261fe694541d38139a27d8e739460d5e69842d1f4cc33</citedby><cites>FETCH-LOGICAL-c333t-b3f47a48bef48ac8e30e261fe694541d38139a27d8e739460d5e69842d1f4cc33</cites><orcidid>0000-0003-4391-4470 ; 0000-0002-1877-7307 ; 0000-0002-7160-6750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598959$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Kim, Seontae</creatorcontrib><creatorcontrib>Pham, Nguyen</creatorcontrib><creatorcontrib>Baek, Woongki</creatorcontrib><creatorcontrib>Choi, Young-ri</creatorcontrib><title>Holistic VM Placement for Distributed Parallel Applications in Heterogeneous Clusters</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>In a heterogeneous cluster, virtual machine (VM) placement for a distributed parallel application is challenging due to numerous possible ways of placing the application and complexity of estimating the performance of the application. This study investigates a holistic VM placement technique for distributed parallel applications in a heterogeneous cluster, aiming to maximize the efficiency of the cluster and consequently reduce the costs for service providers and users. The proposed technique accommodates various factors that have an impact on performance in a combined manner. First, we analyze the effects of the heterogeneity of resources, different VM configurations, and interference between VMs on the performance of distributed parallel applications with a wide diversity of characteristics, including scientific and big data analytics applications. We then propose a placement technique that uses a machine learning algorithm to estimate the runtime of a distributed parallel application. To train a performance estimation model, a distributed parallel application is profiled against synthetic workloads that mostly utilize the dominant resource of the application, which strongly affects the application performance, reducing the profiling space dramatically. Through experimental and simulation studies, we show that the proposed placement technique can find good VM placement configurations for various workloads.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Clusters</subject><subject>Configurations</subject><subject>distributed parallel applications</subject><subject>Hardware</subject><subject>Heterogeneity</subject><subject>Heterogeneous clusters</subject><subject>Interference</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>machine learning based performance model</subject><subject>Placement</subject><subject>Runtime</subject><subject>Sparks</subject><subject>Virtual environments</subject><subject>VM placement algorithm</subject><subject>Workload</subject><subject>Workloads</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LwzAYxoMoOKd3wUvAc2fSpG1yHPVjwsSBm9eQtW8lI2tqkh78783YEE_v1_M8L_wQuqVkRimRD-uPepYTKma5kKQsxRmaUMlkRlnFz__1l-gqhB0hZS6EnKDNwlkTomnw5xteWd3AHvqIO-fxY9p7sx0jtHilvbYWLJ4PgzWNjsb1AZseLyCCd1_QgxsDru0Y0hyu0UWnbYCbU52izfPTul5ky_eX13q-zBrGWMy2rOOV5mILHRe6EcAI5CXtoJS84LRlgjKp86oVUDHJS9IW6SR43tKONyljiu6PuYN33yOEqHZu9H16qfKikpwTQkRSkaOq8S4ED50avNlr_6MoUQd4KsFTB3jqBC9Z7o4WAwB_clFIIQvJfgEOrmr9</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kim, Seontae</creator><creator>Pham, Nguyen</creator><creator>Baek, Woongki</creator><creator>Choi, Young-ri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4391-4470</orcidid><orcidid>https://orcid.org/0000-0002-1877-7307</orcidid><orcidid>https://orcid.org/0000-0002-7160-6750</orcidid></search><sort><creationdate>20210901</creationdate><title>Holistic VM Placement for Distributed Parallel Applications in Heterogeneous Clusters</title><author>Kim, Seontae ; Pham, Nguyen ; Baek, Woongki ; Choi, Young-ri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b3f47a48bef48ac8e30e261fe694541d38139a27d8e739460d5e69842d1f4cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Clusters</topic><topic>Configurations</topic><topic>distributed parallel applications</topic><topic>Hardware</topic><topic>Heterogeneity</topic><topic>Heterogeneous clusters</topic><topic>Interference</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>machine learning based performance model</topic><topic>Placement</topic><topic>Runtime</topic><topic>Sparks</topic><topic>Virtual environments</topic><topic>VM placement algorithm</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seontae</creatorcontrib><creatorcontrib>Pham, Nguyen</creatorcontrib><creatorcontrib>Baek, Woongki</creatorcontrib><creatorcontrib>Choi, Young-ri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seontae</au><au>Pham, Nguyen</au><au>Baek, Woongki</au><au>Choi, Young-ri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holistic VM Placement for Distributed Parallel Applications in Heterogeneous Clusters</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>1411</spage><epage>1425</epage><pages>1411-1425</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>In a heterogeneous cluster, virtual machine (VM) placement for a distributed parallel application is challenging due to numerous possible ways of placing the application and complexity of estimating the performance of the application. This study investigates a holistic VM placement technique for distributed parallel applications in a heterogeneous cluster, aiming to maximize the efficiency of the cluster and consequently reduce the costs for service providers and users. The proposed technique accommodates various factors that have an impact on performance in a combined manner. First, we analyze the effects of the heterogeneity of resources, different VM configurations, and interference between VMs on the performance of distributed parallel applications with a wide diversity of characteristics, including scientific and big data analytics applications. We then propose a placement technique that uses a machine learning algorithm to estimate the runtime of a distributed parallel application. To train a performance estimation model, a distributed parallel application is profiled against synthetic workloads that mostly utilize the dominant resource of the application, which strongly affects the application performance, reducing the profiling space dramatically. Through experimental and simulation studies, we show that the proposed placement technique can find good VM placement configurations for various workloads.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2018.2890668</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4391-4470</orcidid><orcidid>https://orcid.org/0000-0002-1877-7307</orcidid><orcidid>https://orcid.org/0000-0002-7160-6750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2021-09, Vol.14 (5), p.1411-1425
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_8598959
source IEEE Electronic Library (IEL)
subjects Algorithms
Big Data
Cloud computing
Clusters
Configurations
distributed parallel applications
Hardware
Heterogeneity
Heterogeneous clusters
Interference
Machine learning
Machine learning algorithms
machine learning based performance model
Placement
Runtime
Sparks
Virtual environments
VM placement algorithm
Workload
Workloads
title Holistic VM Placement for Distributed Parallel Applications in Heterogeneous Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holistic%20VM%20Placement%20for%20Distributed%20Parallel%20Applications%20in%20Heterogeneous%20Clusters&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Kim,%20Seontae&rft.date=2021-09-01&rft.volume=14&rft.issue=5&rft.spage=1411&rft.epage=1425&rft.pages=1411-1425&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2018.2890668&rft_dat=%3Cproquest_ieee_%3E2579440008%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579440008&rft_id=info:pmid/&rft_ieee_id=8598959&rfr_iscdi=true