Cloud Resource Optimization for Processing Multiple Streams of Visual Data

Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE multimedia 2019-07, Vol.26 (3), p.31-41
Hauptverfasser: Kapach, Zohar, Ulmer, Andrew, Merrick, Daniel, Alikhan, Arshad, Lu, Yung-Hsiang, Mohan, Anup, Kaseb, Ahmed S., Thiruvathukal, George K.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 3
container_start_page 31
container_title IEEE multimedia
container_volume 26
creator Kapach, Zohar
Ulmer, Andrew
Merrick, Daniel
Alikhan, Arshad
Lu, Yung-Hsiang
Mohan, Anup
Kaseb, Ahmed S.
Thiruvathukal, George K.
description Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.
doi_str_mv 10.1109/MMUL.2018.2890255
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8594612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8594612</ieee_id><sourcerecordid>2283394929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2a0e39ef5a39674bf334cba0e6e272fc443c0b056ed5fcf408b57dc043bddaed3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N926OUr9pqagVbyGbnUjKtqnJ7kF_vVsqnmYYnndmeBA6p2RCKdFX8_lyNmGEVhNWacKkPEAjqgUtCFXqcOhJSQpdqY9jdJLzihDClS5H6Gnaxr7BL5BjnxzgxbYL6_BjuxA32MeEn1N0kHPYfOJ533Zh2wJ-7RLYdcbR4_eQe9viG9vZU3TkbZvh7K-O0fLu9m36UMwW94_T61nhmJBdwSwBrsFLy7UqRe05F64ehgpYybwTgjtSE6mgkd55Qapalo0jgtdNY6HhY3S537tN8auH3JnV8PtmOGkYqzjXQjM9UHRPuRRzTuDNNoW1Td-GErNTZnbKzE6Z-VM2ZC72mQAA_3wltVCU8V8u3mie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2283394929</pqid></control><display><type>magazinearticle</type><title>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</title><source>IEEE Electronic Library (IEL)</source><creator>Kapach, Zohar ; Ulmer, Andrew ; Merrick, Daniel ; Alikhan, Arshad ; Lu, Yung-Hsiang ; Mohan, Anup ; Kaseb, Ahmed S. ; Thiruvathukal, George K.</creator><creatorcontrib>Kapach, Zohar ; Ulmer, Andrew ; Merrick, Daniel ; Alikhan, Arshad ; Lu, Yung-Hsiang ; Mohan, Anup ; Kaseb, Ahmed S. ; Thiruvathukal, George K.</creatorcontrib><description>Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.</description><identifier>ISSN: 1070-986X</identifier><identifier>EISSN: 1941-0166</identifier><identifier>DOI: 10.1109/MMUL.2018.2890255</identifier><identifier>CODEN: IEMUE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Central Processing Unit ; Central processing units ; Cloud computing ; CPUs ; Data analysis ; Data transmission ; Decision analysis ; Graphics processing units ; Optimization ; Real time ; Real-time systems ; Streaming media ; Visualization ; Web services</subject><ispartof>IEEE multimedia, 2019-07, Vol.26 (3), p.31-41</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-2a0e39ef5a39674bf334cba0e6e272fc443c0b056ed5fcf408b57dc043bddaed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8594612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8594612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kapach, Zohar</creatorcontrib><creatorcontrib>Ulmer, Andrew</creatorcontrib><creatorcontrib>Merrick, Daniel</creatorcontrib><creatorcontrib>Alikhan, Arshad</creatorcontrib><creatorcontrib>Lu, Yung-Hsiang</creatorcontrib><creatorcontrib>Mohan, Anup</creatorcontrib><creatorcontrib>Kaseb, Ahmed S.</creatorcontrib><creatorcontrib>Thiruvathukal, George K.</creatorcontrib><title>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</title><title>IEEE multimedia</title><addtitle>MUL-M</addtitle><description>Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.</description><subject>Cameras</subject><subject>Central Processing Unit</subject><subject>Central processing units</subject><subject>Cloud computing</subject><subject>CPUs</subject><subject>Data analysis</subject><subject>Data transmission</subject><subject>Decision analysis</subject><subject>Graphics processing units</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Streaming media</subject><subject>Visualization</subject><subject>Web services</subject><issn>1070-986X</issn><issn>1941-0166</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2019</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N926OUr9pqagVbyGbnUjKtqnJ7kF_vVsqnmYYnndmeBA6p2RCKdFX8_lyNmGEVhNWacKkPEAjqgUtCFXqcOhJSQpdqY9jdJLzihDClS5H6Gnaxr7BL5BjnxzgxbYL6_BjuxA32MeEn1N0kHPYfOJ533Zh2wJ-7RLYdcbR4_eQe9viG9vZU3TkbZvh7K-O0fLu9m36UMwW94_T61nhmJBdwSwBrsFLy7UqRe05F64ehgpYybwTgjtSE6mgkd55Qapalo0jgtdNY6HhY3S537tN8auH3JnV8PtmOGkYqzjXQjM9UHRPuRRzTuDNNoW1Td-GErNTZnbKzE6Z-VM2ZC72mQAA_3wltVCU8V8u3mie</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kapach, Zohar</creator><creator>Ulmer, Andrew</creator><creator>Merrick, Daniel</creator><creator>Alikhan, Arshad</creator><creator>Lu, Yung-Hsiang</creator><creator>Mohan, Anup</creator><creator>Kaseb, Ahmed S.</creator><creator>Thiruvathukal, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190701</creationdate><title>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</title><author>Kapach, Zohar ; Ulmer, Andrew ; Merrick, Daniel ; Alikhan, Arshad ; Lu, Yung-Hsiang ; Mohan, Anup ; Kaseb, Ahmed S. ; Thiruvathukal, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2a0e39ef5a39674bf334cba0e6e272fc443c0b056ed5fcf408b57dc043bddaed3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Central Processing Unit</topic><topic>Central processing units</topic><topic>Cloud computing</topic><topic>CPUs</topic><topic>Data analysis</topic><topic>Data transmission</topic><topic>Decision analysis</topic><topic>Graphics processing units</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Streaming media</topic><topic>Visualization</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapach, Zohar</creatorcontrib><creatorcontrib>Ulmer, Andrew</creatorcontrib><creatorcontrib>Merrick, Daniel</creatorcontrib><creatorcontrib>Alikhan, Arshad</creatorcontrib><creatorcontrib>Lu, Yung-Hsiang</creatorcontrib><creatorcontrib>Mohan, Anup</creatorcontrib><creatorcontrib>Kaseb, Ahmed S.</creatorcontrib><creatorcontrib>Thiruvathukal, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kapach, Zohar</au><au>Ulmer, Andrew</au><au>Merrick, Daniel</au><au>Alikhan, Arshad</au><au>Lu, Yung-Hsiang</au><au>Mohan, Anup</au><au>Kaseb, Ahmed S.</au><au>Thiruvathukal, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</atitle><jtitle>IEEE multimedia</jtitle><stitle>MUL-M</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>1070-986X</issn><eissn>1941-0166</eissn><coden>IEMUE4</coden><abstract>Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MMUL.2018.2890255</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-986X
ispartof IEEE multimedia, 2019-07, Vol.26 (3), p.31-41
issn 1070-986X
1941-0166
language eng
recordid cdi_ieee_primary_8594612
source IEEE Electronic Library (IEL)
subjects Cameras
Central Processing Unit
Central processing units
Cloud computing
CPUs
Data analysis
Data transmission
Decision analysis
Graphics processing units
Optimization
Real time
Real-time systems
Streaming media
Visualization
Web services
title Cloud Resource Optimization for Processing Multiple Streams of Visual Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud%20Resource%20Optimization%20for%20Processing%20Multiple%20Streams%20of%20Visual%20Data&rft.jtitle=IEEE%20multimedia&rft.au=Kapach,%20Zohar&rft.date=2019-07-01&rft.volume=26&rft.issue=3&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=1070-986X&rft.eissn=1941-0166&rft.coden=IEMUE4&rft_id=info:doi/10.1109/MMUL.2018.2890255&rft_dat=%3Cproquest_RIE%3E2283394929%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283394929&rft_id=info:pmid/&rft_ieee_id=8594612&rfr_iscdi=true