Cloud Resource Optimization for Processing Multiple Streams of Visual Data
Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows...
Gespeichert in:
Veröffentlicht in: | IEEE multimedia 2019-07, Vol.26 (3), p.31-41 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 3 |
container_start_page | 31 |
container_title | IEEE multimedia |
container_volume | 26 |
creator | Kapach, Zohar Ulmer, Andrew Merrick, Daniel Alikhan, Arshad Lu, Yung-Hsiang Mohan, Anup Kaseb, Ahmed S. Thiruvathukal, George K. |
description | Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads. |
doi_str_mv | 10.1109/MMUL.2018.2890255 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8594612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8594612</ieee_id><sourcerecordid>2283394929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2a0e39ef5a39674bf334cba0e6e272fc443c0b056ed5fcf408b57dc043bddaed3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N926OUr9pqagVbyGbnUjKtqnJ7kF_vVsqnmYYnndmeBA6p2RCKdFX8_lyNmGEVhNWacKkPEAjqgUtCFXqcOhJSQpdqY9jdJLzihDClS5H6Gnaxr7BL5BjnxzgxbYL6_BjuxA32MeEn1N0kHPYfOJ533Zh2wJ-7RLYdcbR4_eQe9viG9vZU3TkbZvh7K-O0fLu9m36UMwW94_T61nhmJBdwSwBrsFLy7UqRe05F64ehgpYybwTgjtSE6mgkd55Qapalo0jgtdNY6HhY3S537tN8auH3JnV8PtmOGkYqzjXQjM9UHRPuRRzTuDNNoW1Td-GErNTZnbKzE6Z-VM2ZC72mQAA_3wltVCU8V8u3mie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2283394929</pqid></control><display><type>magazinearticle</type><title>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</title><source>IEEE Electronic Library (IEL)</source><creator>Kapach, Zohar ; Ulmer, Andrew ; Merrick, Daniel ; Alikhan, Arshad ; Lu, Yung-Hsiang ; Mohan, Anup ; Kaseb, Ahmed S. ; Thiruvathukal, George K.</creator><creatorcontrib>Kapach, Zohar ; Ulmer, Andrew ; Merrick, Daniel ; Alikhan, Arshad ; Lu, Yung-Hsiang ; Mohan, Anup ; Kaseb, Ahmed S. ; Thiruvathukal, George K.</creatorcontrib><description>Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.</description><identifier>ISSN: 1070-986X</identifier><identifier>EISSN: 1941-0166</identifier><identifier>DOI: 10.1109/MMUL.2018.2890255</identifier><identifier>CODEN: IEMUE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Central Processing Unit ; Central processing units ; Cloud computing ; CPUs ; Data analysis ; Data transmission ; Decision analysis ; Graphics processing units ; Optimization ; Real time ; Real-time systems ; Streaming media ; Visualization ; Web services</subject><ispartof>IEEE multimedia, 2019-07, Vol.26 (3), p.31-41</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-2a0e39ef5a39674bf334cba0e6e272fc443c0b056ed5fcf408b57dc043bddaed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8594612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8594612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kapach, Zohar</creatorcontrib><creatorcontrib>Ulmer, Andrew</creatorcontrib><creatorcontrib>Merrick, Daniel</creatorcontrib><creatorcontrib>Alikhan, Arshad</creatorcontrib><creatorcontrib>Lu, Yung-Hsiang</creatorcontrib><creatorcontrib>Mohan, Anup</creatorcontrib><creatorcontrib>Kaseb, Ahmed S.</creatorcontrib><creatorcontrib>Thiruvathukal, George K.</creatorcontrib><title>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</title><title>IEEE multimedia</title><addtitle>MUL-M</addtitle><description>Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.</description><subject>Cameras</subject><subject>Central Processing Unit</subject><subject>Central processing units</subject><subject>Cloud computing</subject><subject>CPUs</subject><subject>Data analysis</subject><subject>Data transmission</subject><subject>Decision analysis</subject><subject>Graphics processing units</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Streaming media</subject><subject>Visualization</subject><subject>Web services</subject><issn>1070-986X</issn><issn>1941-0166</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2019</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N926OUr9pqagVbyGbnUjKtqnJ7kF_vVsqnmYYnndmeBA6p2RCKdFX8_lyNmGEVhNWacKkPEAjqgUtCFXqcOhJSQpdqY9jdJLzihDClS5H6Gnaxr7BL5BjnxzgxbYL6_BjuxA32MeEn1N0kHPYfOJ533Zh2wJ-7RLYdcbR4_eQe9viG9vZU3TkbZvh7K-O0fLu9m36UMwW94_T61nhmJBdwSwBrsFLy7UqRe05F64ehgpYybwTgjtSE6mgkd55Qapalo0jgtdNY6HhY3S537tN8auH3JnV8PtmOGkYqzjXQjM9UHRPuRRzTuDNNoW1Td-GErNTZnbKzE6Z-VM2ZC72mQAA_3wltVCU8V8u3mie</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kapach, Zohar</creator><creator>Ulmer, Andrew</creator><creator>Merrick, Daniel</creator><creator>Alikhan, Arshad</creator><creator>Lu, Yung-Hsiang</creator><creator>Mohan, Anup</creator><creator>Kaseb, Ahmed S.</creator><creator>Thiruvathukal, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190701</creationdate><title>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</title><author>Kapach, Zohar ; Ulmer, Andrew ; Merrick, Daniel ; Alikhan, Arshad ; Lu, Yung-Hsiang ; Mohan, Anup ; Kaseb, Ahmed S. ; Thiruvathukal, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2a0e39ef5a39674bf334cba0e6e272fc443c0b056ed5fcf408b57dc043bddaed3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Central Processing Unit</topic><topic>Central processing units</topic><topic>Cloud computing</topic><topic>CPUs</topic><topic>Data analysis</topic><topic>Data transmission</topic><topic>Decision analysis</topic><topic>Graphics processing units</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Streaming media</topic><topic>Visualization</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapach, Zohar</creatorcontrib><creatorcontrib>Ulmer, Andrew</creatorcontrib><creatorcontrib>Merrick, Daniel</creatorcontrib><creatorcontrib>Alikhan, Arshad</creatorcontrib><creatorcontrib>Lu, Yung-Hsiang</creatorcontrib><creatorcontrib>Mohan, Anup</creatorcontrib><creatorcontrib>Kaseb, Ahmed S.</creatorcontrib><creatorcontrib>Thiruvathukal, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kapach, Zohar</au><au>Ulmer, Andrew</au><au>Merrick, Daniel</au><au>Alikhan, Arshad</au><au>Lu, Yung-Hsiang</au><au>Mohan, Anup</au><au>Kaseb, Ahmed S.</au><au>Thiruvathukal, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud Resource Optimization for Processing Multiple Streams of Visual Data</atitle><jtitle>IEEE multimedia</jtitle><stitle>MUL-M</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>1070-986X</issn><eissn>1941-0166</eissn><coden>IEMUE4</coden><abstract>Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this paper, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g., central processing unit versus general-purpose graphics processing units) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MMUL.2018.2890255</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-986X |
ispartof | IEEE multimedia, 2019-07, Vol.26 (3), p.31-41 |
issn | 1070-986X 1941-0166 |
language | eng |
recordid | cdi_ieee_primary_8594612 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Central Processing Unit Central processing units Cloud computing CPUs Data analysis Data transmission Decision analysis Graphics processing units Optimization Real time Real-time systems Streaming media Visualization Web services |
title | Cloud Resource Optimization for Processing Multiple Streams of Visual Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud%20Resource%20Optimization%20for%20Processing%20Multiple%20Streams%20of%20Visual%20Data&rft.jtitle=IEEE%20multimedia&rft.au=Kapach,%20Zohar&rft.date=2019-07-01&rft.volume=26&rft.issue=3&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=1070-986X&rft.eissn=1941-0166&rft.coden=IEMUE4&rft_id=info:doi/10.1109/MMUL.2018.2890255&rft_dat=%3Cproquest_RIE%3E2283394929%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283394929&rft_id=info:pmid/&rft_ieee_id=8594612&rfr_iscdi=true |