Representative evolution: a simple and efficient algorithm for artificial neural network evolution

In this study a new evolutionary algorithm, i.e., representative evolution (RE), for evolving artificial neural networks (ANN) is proposed. Unlike most of the evolutionary algorithms, the RE uses population information for generating variations in individuals of a population. An evolutionary system,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Islam, M.M., Akital, H., Shahjahan, M., Murase, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590 vol.6
container_issue
container_start_page 585
container_title
container_volume 6
creator Islam, M.M.
Akital, H.
Shahjahan, M.
Murase, K.
description In this study a new evolutionary algorithm, i.e., representative evolution (RE), for evolving artificial neural networks (ANN) is proposed. Unlike most of the evolutionary algorithms, the RE uses population information for generating variations in individuals of a population. An evolutionary system, i.e., RENet, based on the RE for evolving feedforward artificial neural networks with weight learning is described. The RENet uses three operators (i.e., one crossover and two mutations) sequentially. If one operator is successful, no other operator is applied. The RENet is applied to a benchmark character recognition problem. It can produce very compact ANN size with a small classification error.
doi_str_mv 10.1109/IJCNN.2000.859458
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859458</ieee_id><sourcerecordid>859458</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-8ed2ce52ac48e61f55a38e2a20468f9066fa7cc05aa1ace6adb88bef8015bf0e3</originalsourceid><addsrcrecordid>eNpFkMtOwzAURC0eElXJB8DKP5Bw7cSOzQ5VUIqqIiFYVzfJNRjyqBy3iL-nUCRWszgzZzGMXQjIhAB7tXiYrVaZBIDMKFsoc8QmQimT5hbkMUtsaaDUVoEWtjzZM7AmLVWpz1gyju_7nYBcaSkmrHqiTaCR-ojR74jTbmi30Q_9NUc--m7TEse-4eScr_2-xrF9HYKPbx13Q-AYov8h2PKetuE34ucQPv5N5-zUYTtS8pdT9nJ3-zy7T5eP88XsZpl6AUVMDTWyJiWxLgxp4ZTC3JBECYU2zoLWDsu6BoUosCaNTWVMRc6AUJUDyqfs8uD1RLTeBN9h-FofDsq_ASnxWtA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Representative evolution: a simple and efficient algorithm for artificial neural network evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Islam, M.M. ; Akital, H. ; Shahjahan, M. ; Murase, K.</creator><creatorcontrib>Islam, M.M. ; Akital, H. ; Shahjahan, M. ; Murase, K.</creatorcontrib><description>In this study a new evolutionary algorithm, i.e., representative evolution (RE), for evolving artificial neural networks (ANN) is proposed. Unlike most of the evolutionary algorithms, the RE uses population information for generating variations in individuals of a population. An evolutionary system, i.e., RENet, based on the RE for evolving feedforward artificial neural networks with weight learning is described. The RENet uses three operators (i.e., one crossover and two mutations) sequentially. If one operator is successful, no other operator is applied. The RENet is applied to a benchmark character recognition problem. It can produce very compact ANN size with a small classification error.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.859458</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial intelligence ; Artificial neural networks ; Character recognition ; Evolutionary computation ; Feedforward systems ; Genetic algorithms ; Genetic mutations ; Genetic programming ; Humans</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.585-590 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859458$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,4052,4053,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859458$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Islam, M.M.</creatorcontrib><creatorcontrib>Akital, H.</creatorcontrib><creatorcontrib>Shahjahan, M.</creatorcontrib><creatorcontrib>Murase, K.</creatorcontrib><title>Representative evolution: a simple and efficient algorithm for artificial neural network evolution</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>In this study a new evolutionary algorithm, i.e., representative evolution (RE), for evolving artificial neural networks (ANN) is proposed. Unlike most of the evolutionary algorithms, the RE uses population information for generating variations in individuals of a population. An evolutionary system, i.e., RENet, based on the RE for evolving feedforward artificial neural networks with weight learning is described. The RENet uses three operators (i.e., one crossover and two mutations) sequentially. If one operator is successful, no other operator is applied. The RENet is applied to a benchmark character recognition problem. It can produce very compact ANN size with a small classification error.</description><subject>Algorithm design and analysis</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Character recognition</subject><subject>Evolutionary computation</subject><subject>Feedforward systems</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Genetic programming</subject><subject>Humans</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAURC0eElXJB8DKP5Bw7cSOzQ5VUIqqIiFYVzfJNRjyqBy3iL-nUCRWszgzZzGMXQjIhAB7tXiYrVaZBIDMKFsoc8QmQimT5hbkMUtsaaDUVoEWtjzZM7AmLVWpz1gyju_7nYBcaSkmrHqiTaCR-ojR74jTbmi30Q_9NUc--m7TEse-4eScr_2-xrF9HYKPbx13Q-AYov8h2PKetuE34ucQPv5N5-zUYTtS8pdT9nJ3-zy7T5eP88XsZpl6AUVMDTWyJiWxLgxp4ZTC3JBECYU2zoLWDsu6BoUosCaNTWVMRc6AUJUDyqfs8uD1RLTeBN9h-FofDsq_ASnxWtA</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Islam, M.M.</creator><creator>Akital, H.</creator><creator>Shahjahan, M.</creator><creator>Murase, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Representative evolution: a simple and efficient algorithm for artificial neural network evolution</title><author>Islam, M.M. ; Akital, H. ; Shahjahan, M. ; Murase, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-8ed2ce52ac48e61f55a38e2a20468f9066fa7cc05aa1ace6adb88bef8015bf0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Character recognition</topic><topic>Evolutionary computation</topic><topic>Feedforward systems</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Genetic programming</topic><topic>Humans</topic><toplevel>online_resources</toplevel><creatorcontrib>Islam, M.M.</creatorcontrib><creatorcontrib>Akital, H.</creatorcontrib><creatorcontrib>Shahjahan, M.</creatorcontrib><creatorcontrib>Murase, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Islam, M.M.</au><au>Akital, H.</au><au>Shahjahan, M.</au><au>Murase, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Representative evolution: a simple and efficient algorithm for artificial neural network evolution</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>6</volume><spage>585</spage><epage>590 vol.6</epage><pages>585-590 vol.6</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>In this study a new evolutionary algorithm, i.e., representative evolution (RE), for evolving artificial neural networks (ANN) is proposed. Unlike most of the evolutionary algorithms, the RE uses population information for generating variations in individuals of a population. An evolutionary system, i.e., RENet, based on the RE for evolving feedforward artificial neural networks with weight learning is described. The RENet uses three operators (i.e., one crossover and two mutations) sequentially. If one operator is successful, no other operator is applied. The RENet is applied to a benchmark character recognition problem. It can produce very compact ANN size with a small classification error.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.859458</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.585-590 vol.6
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_859458
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Artificial intelligence
Artificial neural networks
Character recognition
Evolutionary computation
Feedforward systems
Genetic algorithms
Genetic mutations
Genetic programming
Humans
title Representative evolution: a simple and efficient algorithm for artificial neural network evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Representative%20evolution:%20a%20simple%20and%20efficient%20algorithm%20for%20artificial%20neural%20network%20evolution&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Islam,%20M.M.&rft.date=2000&rft.volume=6&rft.spage=585&rft.epage=590%20vol.6&rft.pages=585-590%20vol.6&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.859458&rft_dat=%3Cieee_6IE%3E859458%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859458&rfr_iscdi=true