A classification scheme for applications with ambiguous data

We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trappenberg, T.P., Back, A.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301 vol.6
container_issue
container_start_page 296
container_title
container_volume 6
creator Trappenberg, T.P.
Back, A.D.
description We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications.
doi_str_mv 10.1109/IJCNN.2000.859412
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859412</ieee_id><sourcerecordid>859412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-848fde31930e566ba674ab935cd1b8b415bec3ca3c844ce2643b7f8a1c6835693</originalsourceid><addsrcrecordid>eNotj1tLw0AUhBcvYKn5Afq0fyDxnOwdfCnBS6XUF30uZzcbu9KakE0R_72F9mlghm-YYewOoUIE97B8a9brqgaAyionsb5gM1TKlsJBfckKZywY7RRodObqmIGzpVFG37Ai5-8jhyCUrnHGHhc87Cjn1KVAU-p_eA7buI-860dOw7A725n_pmnLae_T16E_ZN7SRLfsuqNdjsVZ5-zz-emjeS1X7y_LZrEqE4KcSitt10aBTkBUWnvSRpJ3QoUWvfUSlY9BBBLBShliraXwprOEQdvjTCfm7P7Um2KMm2FMexr_Nqfr4h8qiEqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A classification scheme for applications with ambiguous data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Trappenberg, T.P. ; Back, A.D.</creator><creatorcontrib>Trappenberg, T.P. ; Back, A.D.</creatorcontrib><description>We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.859412</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Bayesian methods ; Benchmark testing ; Data mining ; Linear discriminant analysis ; Machine learning algorithms ; Neuroscience ; Pattern recognition ; Psychology ; Training data</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.296-301 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trappenberg, T.P.</creatorcontrib><creatorcontrib>Back, A.D.</creatorcontrib><title>A classification scheme for applications with ambiguous data</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications.</description><subject>Artificial neural networks</subject><subject>Bayesian methods</subject><subject>Benchmark testing</subject><subject>Data mining</subject><subject>Linear discriminant analysis</subject><subject>Machine learning algorithms</subject><subject>Neuroscience</subject><subject>Pattern recognition</subject><subject>Psychology</subject><subject>Training data</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLw0AUhBcvYKn5Afq0fyDxnOwdfCnBS6XUF30uZzcbu9KakE0R_72F9mlghm-YYewOoUIE97B8a9brqgaAyionsb5gM1TKlsJBfckKZywY7RRodObqmIGzpVFG37Ai5-8jhyCUrnHGHhc87Cjn1KVAU-p_eA7buI-860dOw7A725n_pmnLae_T16E_ZN7SRLfsuqNdjsVZ5-zz-emjeS1X7y_LZrEqE4KcSitt10aBTkBUWnvSRpJ3QoUWvfUSlY9BBBLBShliraXwprOEQdvjTCfm7P7Um2KMm2FMexr_Nqfr4h8qiEqk</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Trappenberg, T.P.</creator><creator>Back, A.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>A classification scheme for applications with ambiguous data</title><author>Trappenberg, T.P. ; Back, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-848fde31930e566ba674ab935cd1b8b415bec3ca3c844ce2643b7f8a1c6835693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Bayesian methods</topic><topic>Benchmark testing</topic><topic>Data mining</topic><topic>Linear discriminant analysis</topic><topic>Machine learning algorithms</topic><topic>Neuroscience</topic><topic>Pattern recognition</topic><topic>Psychology</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Trappenberg, T.P.</creatorcontrib><creatorcontrib>Back, A.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trappenberg, T.P.</au><au>Back, A.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A classification scheme for applications with ambiguous data</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>6</volume><spage>296</spage><epage>301 vol.6</epage><pages>296-301 vol.6</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.859412</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.296-301 vol.6
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_859412
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Bayesian methods
Benchmark testing
Data mining
Linear discriminant analysis
Machine learning algorithms
Neuroscience
Pattern recognition
Psychology
Training data
title A classification scheme for applications with ambiguous data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20classification%20scheme%20for%20applications%20with%20ambiguous%20data&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Trappenberg,%20T.P.&rft.date=2000&rft.volume=6&rft.spage=296&rft.epage=301%20vol.6&rft.pages=296-301%20vol.6&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.859412&rft_dat=%3Cieee_6IE%3E859412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859412&rfr_iscdi=true