A classification scheme for applications with ambiguous data
We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 vol.6 |
---|---|
container_issue | |
container_start_page | 296 |
container_title | |
container_volume | 6 |
creator | Trappenberg, T.P. Back, A.D. |
description | We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications. |
doi_str_mv | 10.1109/IJCNN.2000.859412 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859412</ieee_id><sourcerecordid>859412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-848fde31930e566ba674ab935cd1b8b415bec3ca3c844ce2643b7f8a1c6835693</originalsourceid><addsrcrecordid>eNotj1tLw0AUhBcvYKn5Afq0fyDxnOwdfCnBS6XUF30uZzcbu9KakE0R_72F9mlghm-YYewOoUIE97B8a9brqgaAyionsb5gM1TKlsJBfckKZywY7RRodObqmIGzpVFG37Ai5-8jhyCUrnHGHhc87Cjn1KVAU-p_eA7buI-860dOw7A725n_pmnLae_T16E_ZN7SRLfsuqNdjsVZ5-zz-emjeS1X7y_LZrEqE4KcSitt10aBTkBUWnvSRpJ3QoUWvfUSlY9BBBLBShliraXwprOEQdvjTCfm7P7Um2KMm2FMexr_Nqfr4h8qiEqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A classification scheme for applications with ambiguous data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Trappenberg, T.P. ; Back, A.D.</creator><creatorcontrib>Trappenberg, T.P. ; Back, A.D.</creatorcontrib><description>We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.859412</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Bayesian methods ; Benchmark testing ; Data mining ; Linear discriminant analysis ; Machine learning algorithms ; Neuroscience ; Pattern recognition ; Psychology ; Training data</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.296-301 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trappenberg, T.P.</creatorcontrib><creatorcontrib>Back, A.D.</creatorcontrib><title>A classification scheme for applications with ambiguous data</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications.</description><subject>Artificial neural networks</subject><subject>Bayesian methods</subject><subject>Benchmark testing</subject><subject>Data mining</subject><subject>Linear discriminant analysis</subject><subject>Machine learning algorithms</subject><subject>Neuroscience</subject><subject>Pattern recognition</subject><subject>Psychology</subject><subject>Training data</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLw0AUhBcvYKn5Afq0fyDxnOwdfCnBS6XUF30uZzcbu9KakE0R_72F9mlghm-YYewOoUIE97B8a9brqgaAyionsb5gM1TKlsJBfckKZywY7RRodObqmIGzpVFG37Ai5-8jhyCUrnHGHhc87Cjn1KVAU-p_eA7buI-860dOw7A725n_pmnLae_T16E_ZN7SRLfsuqNdjsVZ5-zz-emjeS1X7y_LZrEqE4KcSitt10aBTkBUWnvSRpJ3QoUWvfUSlY9BBBLBShliraXwprOEQdvjTCfm7P7Um2KMm2FMexr_Nqfr4h8qiEqk</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Trappenberg, T.P.</creator><creator>Back, A.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>A classification scheme for applications with ambiguous data</title><author>Trappenberg, T.P. ; Back, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-848fde31930e566ba674ab935cd1b8b415bec3ca3c844ce2643b7f8a1c6835693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Bayesian methods</topic><topic>Benchmark testing</topic><topic>Data mining</topic><topic>Linear discriminant analysis</topic><topic>Machine learning algorithms</topic><topic>Neuroscience</topic><topic>Pattern recognition</topic><topic>Psychology</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Trappenberg, T.P.</creatorcontrib><creatorcontrib>Back, A.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trappenberg, T.P.</au><au>Back, A.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A classification scheme for applications with ambiguous data</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>6</volume><spage>296</spage><epage>301 vol.6</epage><pages>296-301 vol.6</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>We propose a scheme for pattern classifications in applications which include ambiguous data, that is, where pattern occupy overlapping areas in the feature space. Such situations frequently occur with noisy data and/or where some features are unknown. We demonstrate that it is advantageous to first detect those ambiguous areas with the help of training data and then to re-classify those data in these areas as ambiguous before making class predictions on test sets. This scheme is demonstrated with a simple example and benchmarked on two real world applications.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.859412</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7576 |
ispartof | Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.296-301 vol.6 |
issn | 1098-7576 1558-3902 |
language | eng |
recordid | cdi_ieee_primary_859412 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Bayesian methods Benchmark testing Data mining Linear discriminant analysis Machine learning algorithms Neuroscience Pattern recognition Psychology Training data |
title | A classification scheme for applications with ambiguous data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20classification%20scheme%20for%20applications%20with%20ambiguous%20data&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Trappenberg,%20T.P.&rft.date=2000&rft.volume=6&rft.spage=296&rft.epage=301%20vol.6&rft.pages=296-301%20vol.6&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.859412&rft_dat=%3Cieee_6IE%3E859412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859412&rfr_iscdi=true |