Confidence measures for dialogue management in the CU Communicator system
This paper provides improved confidence assessment for detection of word-level speech recognition errors and out-of-domain user requests using language model features. We consider a combined measure of confidence that utilizes the language model back-off sequence, language model score, and phonetic...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | II1240 vol.2 |
---|---|
container_issue | |
container_start_page | II1237 |
container_title | |
container_volume | 2 |
creator | San-Segundo, R. Pellom, B. Ward, W. Pardo, J.M. |
description | This paper provides improved confidence assessment for detection of word-level speech recognition errors and out-of-domain user requests using language model features. We consider a combined measure of confidence that utilizes the language model back-off sequence, language model score, and phonetic length of recognized words as indicators of speech recognition confidence. The paper investigates the ability of each feature to detect speech recognition errors and out-of-domain utterances as well as two methods for combining the features contextually: a multi-layer perceptron and a statistical decision tree. We illustrate the effectiveness of the algorithm by considering utterances from the ATIS airline information task as either in-domain and out-of-domain for the DARPA Communicator task. Using this hand-labeled data, it is shown that 27.9% of incorrectly recognized words and 36.4% of out-of-domain phrases are detected at a 2.5% false alarm rate. |
doi_str_mv | 10.1109/ICASSP.2000.859190 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859190</ieee_id><sourcerecordid>859190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i216t-b7c261fcdca2e4cd6b05488ba8b8d4d015a4a3d2119b4575f64b1681042c710f3</originalsourceid><addsrcrecordid>eNotUMtqwzAQFH1A0zQ_kJN-wK5WlmTpWEwfgUALaaC3oMc6VYntYtmH_H0FKQzMMMwuwxCyBlYCMPO4aZ52u4-SM8ZKLQ0YdkUWvKpNkeXXNVmZWrOMSnFT8RuyAMlZoUCYO3Kf0k--07XQC7Jphr6NAXuPtEOb5hETbYeRhmhPw3HOru3tETvsJxp7On0jbfa0Gbpu7qO3U46mc5qweyC3rT0lXP3zkuxfnj-bt2L7_prrbovIQU2Fqz1X0PrgLUfhg3JMCq2d1U4HERhIK2wVOIBxQtayVcKB0sAE9zWwtlqS9eVvRMTD7xg7O54PlxGqP4Q9TwE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Confidence measures for dialogue management in the CU Communicator system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>San-Segundo, R. ; Pellom, B. ; Ward, W. ; Pardo, J.M.</creator><creatorcontrib>San-Segundo, R. ; Pellom, B. ; Ward, W. ; Pardo, J.M.</creatorcontrib><description>This paper provides improved confidence assessment for detection of word-level speech recognition errors and out-of-domain user requests using language model features. We consider a combined measure of confidence that utilizes the language model back-off sequence, language model score, and phonetic length of recognized words as indicators of speech recognition confidence. The paper investigates the ability of each feature to detect speech recognition errors and out-of-domain utterances as well as two methods for combining the features contextually: a multi-layer perceptron and a statistical decision tree. We illustrate the effectiveness of the algorithm by considering utterances from the ATIS airline information task as either in-domain and out-of-domain for the DARPA Communicator task. Using this hand-labeled data, it is shown that 27.9% of incorrectly recognized words and 36.4% of out-of-domain phrases are detected at a 2.5% false alarm rate.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780362932</identifier><identifier>ISBN: 0780362934</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2000.859190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Context ; Decision trees ; Decoding ; Length measurement ; Multilayer perceptrons ; Natural languages ; Power system modeling ; Robustness ; Speech recognition</subject><ispartof>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.2, p.II1237-II1240 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>San-Segundo, R.</creatorcontrib><creatorcontrib>Pellom, B.</creatorcontrib><creatorcontrib>Ward, W.</creatorcontrib><creatorcontrib>Pardo, J.M.</creatorcontrib><title>Confidence measures for dialogue management in the CU Communicator system</title><title>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</title><addtitle>ICASSP</addtitle><description>This paper provides improved confidence assessment for detection of word-level speech recognition errors and out-of-domain user requests using language model features. We consider a combined measure of confidence that utilizes the language model back-off sequence, language model score, and phonetic length of recognized words as indicators of speech recognition confidence. The paper investigates the ability of each feature to detect speech recognition errors and out-of-domain utterances as well as two methods for combining the features contextually: a multi-layer perceptron and a statistical decision tree. We illustrate the effectiveness of the algorithm by considering utterances from the ATIS airline information task as either in-domain and out-of-domain for the DARPA Communicator task. Using this hand-labeled data, it is shown that 27.9% of incorrectly recognized words and 36.4% of out-of-domain phrases are detected at a 2.5% false alarm rate.</description><subject>Computer vision</subject><subject>Context</subject><subject>Decision trees</subject><subject>Decoding</subject><subject>Length measurement</subject><subject>Multilayer perceptrons</subject><subject>Natural languages</subject><subject>Power system modeling</subject><subject>Robustness</subject><subject>Speech recognition</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780362932</isbn><isbn>0780362934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMtqwzAQFH1A0zQ_kJN-wK5WlmTpWEwfgUALaaC3oMc6VYntYtmH_H0FKQzMMMwuwxCyBlYCMPO4aZ52u4-SM8ZKLQ0YdkUWvKpNkeXXNVmZWrOMSnFT8RuyAMlZoUCYO3Kf0k--07XQC7Jphr6NAXuPtEOb5hETbYeRhmhPw3HOru3tETvsJxp7On0jbfa0Gbpu7qO3U46mc5qweyC3rT0lXP3zkuxfnj-bt2L7_prrbovIQU2Fqz1X0PrgLUfhg3JMCq2d1U4HERhIK2wVOIBxQtayVcKB0sAE9zWwtlqS9eVvRMTD7xg7O54PlxGqP4Q9TwE</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>San-Segundo, R.</creator><creator>Pellom, B.</creator><creator>Ward, W.</creator><creator>Pardo, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Confidence measures for dialogue management in the CU Communicator system</title><author>San-Segundo, R. ; Pellom, B. ; Ward, W. ; Pardo, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i216t-b7c261fcdca2e4cd6b05488ba8b8d4d015a4a3d2119b4575f64b1681042c710f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computer vision</topic><topic>Context</topic><topic>Decision trees</topic><topic>Decoding</topic><topic>Length measurement</topic><topic>Multilayer perceptrons</topic><topic>Natural languages</topic><topic>Power system modeling</topic><topic>Robustness</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>San-Segundo, R.</creatorcontrib><creatorcontrib>Pellom, B.</creatorcontrib><creatorcontrib>Ward, W.</creatorcontrib><creatorcontrib>Pardo, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>San-Segundo, R.</au><au>Pellom, B.</au><au>Ward, W.</au><au>Pardo, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Confidence measures for dialogue management in the CU Communicator system</atitle><btitle>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</btitle><stitle>ICASSP</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>II1237</spage><epage>II1240 vol.2</epage><pages>II1237-II1240 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780362932</isbn><isbn>0780362934</isbn><abstract>This paper provides improved confidence assessment for detection of word-level speech recognition errors and out-of-domain user requests using language model features. We consider a combined measure of confidence that utilizes the language model back-off sequence, language model score, and phonetic length of recognized words as indicators of speech recognition confidence. The paper investigates the ability of each feature to detect speech recognition errors and out-of-domain utterances as well as two methods for combining the features contextually: a multi-layer perceptron and a statistical decision tree. We illustrate the effectiveness of the algorithm by considering utterances from the ATIS airline information task as either in-domain and out-of-domain for the DARPA Communicator task. Using this hand-labeled data, it is shown that 27.9% of incorrectly recognized words and 36.4% of out-of-domain phrases are detected at a 2.5% false alarm rate.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2000.859190</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.2, p.II1237-II1240 vol.2 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_859190 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision Context Decision trees Decoding Length measurement Multilayer perceptrons Natural languages Power system modeling Robustness Speech recognition |
title | Confidence measures for dialogue management in the CU Communicator system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Confidence%20measures%20for%20dialogue%20management%20in%20the%20CU%20Communicator%20system&rft.btitle=2000%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings%20(Cat.%20No.00CH37100)&rft.au=San-Segundo,%20R.&rft.date=2000&rft.volume=2&rft.spage=II1237&rft.epage=II1240%20vol.2&rft.pages=II1237-II1240%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780362932&rft.isbn_list=0780362934&rft_id=info:doi/10.1109/ICASSP.2000.859190&rft_dat=%3Cieee_6IE%3E859190%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859190&rfr_iscdi=true |