Fractional Regularization to Improve Photoacoustic Tomographic Image Reconstruction

Photoacoustic tomography involves reconstructing the initial pressure rise distribution from the measured acoustic boundary data. The recovery of the initial pressure rise distribution tends to be an ill-posed problem in the presence of noise and when limited independent data is available, necessita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-08, Vol.38 (8), p.1935-1947
Hauptverfasser: Prakash, Jaya, Sanny, Dween, Kalva, Sandeep Kumar, Pramanik, Manojit, Yalavarthy, Phaneendra K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1947
container_issue 8
container_start_page 1935
container_title IEEE transactions on medical imaging
container_volume 38
creator Prakash, Jaya
Sanny, Dween
Kalva, Sandeep Kumar
Pramanik, Manojit
Yalavarthy, Phaneendra K.
description Photoacoustic tomography involves reconstructing the initial pressure rise distribution from the measured acoustic boundary data. The recovery of the initial pressure rise distribution tends to be an ill-posed problem in the presence of noise and when limited independent data is available, necessitating regularization. The standard regularization schemes include Tikhonov, ℓ 1 -norm, and total-variation. These regularization schemes weigh the singular values equally irrespective of the noise level present in the data. This paper introduces a fractional framework to weigh the singular values with respect to a fractional power. This fractional framework was implemented for Tikhonov, ℓ 1 -norm, and total-variation regularization schemes. Moreover, an automated method for choosing the fractional power was also proposed. It was shown theoretically and with numerical experiments that the fractional power is inversely related to the data noise level for fractional Tikhonov scheme. The fractional framework outperforms the standard regularization schemes, Tikhonov, ℓ 1 -norm, and total-variation by 54% in numerical simulations, experimental phantoms, and in vivo rat data in terms of observed contrast/signal-to-noise-ratio of the reconstructed images.
doi_str_mv 10.1109/TMI.2018.2889314
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8586926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8586926</ieee_id><sourcerecordid>2268432880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-3e94e4241e7c38ca845adf80c4e45b2576d73c2f39e4cb90143c831e36e59f863</originalsourceid><addsrcrecordid>eNpdkM9LwzAcxYMobk7vgiAFL14683vJUYbTwkTRCd5Kln27dbTLTFpB_3ozN3fwlPDyeY-Xh9A5wX1CsL6ZPGZ9ionqU6U0I_wAdYkQKqWCvx-iLqYDlWIsaQedhLDEmHCB9THqMCwUFYx30evIG9uUbmWq5AXmbWV8-W02QtK4JKvX3n1C8rxwjTPWtaEpbTJxtZt7s17Ee1abOUSndavQ-PY36hQdFaYKcLY7e-htdDcZPqTjp_tseDtOLVO6SRloDpxyAoMoWKO4MLNCYRtVMaViIGcDZmnBNHA71bE8s4oRYBKELpRkPXS9zY0lP1oITV6XwUJVmRXEqjklMpqUVCyiV__QpWt9_HSkqFScxQFxpPCWst6F4KHI176sjf_KCc43g-dx8HwzeL4bPFoud8HttIbZ3vC3cAQutkAJAPtnJZTUVLIf80eEUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268432880</pqid></control><display><type>article</type><title>Fractional Regularization to Improve Photoacoustic Tomographic Image Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Prakash, Jaya ; Sanny, Dween ; Kalva, Sandeep Kumar ; Pramanik, Manojit ; Yalavarthy, Phaneendra K.</creator><creatorcontrib>Prakash, Jaya ; Sanny, Dween ; Kalva, Sandeep Kumar ; Pramanik, Manojit ; Yalavarthy, Phaneendra K.</creatorcontrib><description>Photoacoustic tomography involves reconstructing the initial pressure rise distribution from the measured acoustic boundary data. The recovery of the initial pressure rise distribution tends to be an ill-posed problem in the presence of noise and when limited independent data is available, necessitating regularization. The standard regularization schemes include Tikhonov, ℓ 1 -norm, and total-variation. These regularization schemes weigh the singular values equally irrespective of the noise level present in the data. This paper introduces a fractional framework to weigh the singular values with respect to a fractional power. This fractional framework was implemented for Tikhonov, ℓ 1 -norm, and total-variation regularization schemes. Moreover, an automated method for choosing the fractional power was also proposed. It was shown theoretically and with numerical experiments that the fractional power is inversely related to the data noise level for fractional Tikhonov scheme. The fractional framework outperforms the standard regularization schemes, Tikhonov, ℓ 1 -norm, and total-variation by 54% in numerical simulations, experimental phantoms, and in vivo rat data in terms of observed contrast/signal-to-noise-ratio of the reconstructed images.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2889314</identifier><identifier>PMID: 30582534</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic noise ; Acoustics ; Algorithms ; Animals ; Biological tissues ; Brain - diagnostic imaging ; compressive sensing ; Computer Simulation ; Data recovery ; Detectors ; fractional methods ; Ill posed problems ; Image contrast ; Image processing ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Imaging ; Initial pressure ; Noise ; Noise levels ; Noise standards ; Phantoms, Imaging ; Photoacoustic effect ; Photoacoustic Techniques - methods ; Photoacoustic tomography ; Pressure ; Rats ; Regularization ; regularization theory ; Signal to noise ratio ; Stress concentration ; Tomography - methods ; Variation</subject><ispartof>IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1935-1947</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-3e94e4241e7c38ca845adf80c4e45b2576d73c2f39e4cb90143c831e36e59f863</citedby><cites>FETCH-LOGICAL-c389t-3e94e4241e7c38ca845adf80c4e45b2576d73c2f39e4cb90143c831e36e59f863</cites><orcidid>0000-0003-1034-7246 ; 0000-0003-2865-5714 ; 0000-0002-2375-154X ; 0000-0003-4810-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8586926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8586926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30582534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prakash, Jaya</creatorcontrib><creatorcontrib>Sanny, Dween</creatorcontrib><creatorcontrib>Kalva, Sandeep Kumar</creatorcontrib><creatorcontrib>Pramanik, Manojit</creatorcontrib><creatorcontrib>Yalavarthy, Phaneendra K.</creatorcontrib><title>Fractional Regularization to Improve Photoacoustic Tomographic Image Reconstruction</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Photoacoustic tomography involves reconstructing the initial pressure rise distribution from the measured acoustic boundary data. The recovery of the initial pressure rise distribution tends to be an ill-posed problem in the presence of noise and when limited independent data is available, necessitating regularization. The standard regularization schemes include Tikhonov, ℓ 1 -norm, and total-variation. These regularization schemes weigh the singular values equally irrespective of the noise level present in the data. This paper introduces a fractional framework to weigh the singular values with respect to a fractional power. This fractional framework was implemented for Tikhonov, ℓ 1 -norm, and total-variation regularization schemes. Moreover, an automated method for choosing the fractional power was also proposed. It was shown theoretically and with numerical experiments that the fractional power is inversely related to the data noise level for fractional Tikhonov scheme. The fractional framework outperforms the standard regularization schemes, Tikhonov, ℓ 1 -norm, and total-variation by 54% in numerical simulations, experimental phantoms, and in vivo rat data in terms of observed contrast/signal-to-noise-ratio of the reconstructed images.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Biological tissues</subject><subject>Brain - diagnostic imaging</subject><subject>compressive sensing</subject><subject>Computer Simulation</subject><subject>Data recovery</subject><subject>Detectors</subject><subject>fractional methods</subject><subject>Ill posed problems</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Initial pressure</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Noise standards</subject><subject>Phantoms, Imaging</subject><subject>Photoacoustic effect</subject><subject>Photoacoustic Techniques - methods</subject><subject>Photoacoustic tomography</subject><subject>Pressure</subject><subject>Rats</subject><subject>Regularization</subject><subject>regularization theory</subject><subject>Signal to noise ratio</subject><subject>Stress concentration</subject><subject>Tomography - methods</subject><subject>Variation</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkM9LwzAcxYMobk7vgiAFL14683vJUYbTwkTRCd5Kln27dbTLTFpB_3ozN3fwlPDyeY-Xh9A5wX1CsL6ZPGZ9ionqU6U0I_wAdYkQKqWCvx-iLqYDlWIsaQedhLDEmHCB9THqMCwUFYx30evIG9uUbmWq5AXmbWV8-W02QtK4JKvX3n1C8rxwjTPWtaEpbTJxtZt7s17Ee1abOUSndavQ-PY36hQdFaYKcLY7e-htdDcZPqTjp_tseDtOLVO6SRloDpxyAoMoWKO4MLNCYRtVMaViIGcDZmnBNHA71bE8s4oRYBKELpRkPXS9zY0lP1oITV6XwUJVmRXEqjklMpqUVCyiV__QpWt9_HSkqFScxQFxpPCWst6F4KHI176sjf_KCc43g-dx8HwzeL4bPFoud8HttIbZ3vC3cAQutkAJAPtnJZTUVLIf80eEUA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Prakash, Jaya</creator><creator>Sanny, Dween</creator><creator>Kalva, Sandeep Kumar</creator><creator>Pramanik, Manojit</creator><creator>Yalavarthy, Phaneendra K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1034-7246</orcidid><orcidid>https://orcid.org/0000-0003-2865-5714</orcidid><orcidid>https://orcid.org/0000-0002-2375-154X</orcidid><orcidid>https://orcid.org/0000-0003-4810-352X</orcidid></search><sort><creationdate>20190801</creationdate><title>Fractional Regularization to Improve Photoacoustic Tomographic Image Reconstruction</title><author>Prakash, Jaya ; Sanny, Dween ; Kalva, Sandeep Kumar ; Pramanik, Manojit ; Yalavarthy, Phaneendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-3e94e4241e7c38ca845adf80c4e45b2576d73c2f39e4cb90143c831e36e59f863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Biological tissues</topic><topic>Brain - diagnostic imaging</topic><topic>compressive sensing</topic><topic>Computer Simulation</topic><topic>Data recovery</topic><topic>Detectors</topic><topic>fractional methods</topic><topic>Ill posed problems</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Initial pressure</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Noise standards</topic><topic>Phantoms, Imaging</topic><topic>Photoacoustic effect</topic><topic>Photoacoustic Techniques - methods</topic><topic>Photoacoustic tomography</topic><topic>Pressure</topic><topic>Rats</topic><topic>Regularization</topic><topic>regularization theory</topic><topic>Signal to noise ratio</topic><topic>Stress concentration</topic><topic>Tomography - methods</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Prakash, Jaya</creatorcontrib><creatorcontrib>Sanny, Dween</creatorcontrib><creatorcontrib>Kalva, Sandeep Kumar</creatorcontrib><creatorcontrib>Pramanik, Manojit</creatorcontrib><creatorcontrib>Yalavarthy, Phaneendra K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prakash, Jaya</au><au>Sanny, Dween</au><au>Kalva, Sandeep Kumar</au><au>Pramanik, Manojit</au><au>Yalavarthy, Phaneendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Regularization to Improve Photoacoustic Tomographic Image Reconstruction</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>38</volume><issue>8</issue><spage>1935</spage><epage>1947</epage><pages>1935-1947</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Photoacoustic tomography involves reconstructing the initial pressure rise distribution from the measured acoustic boundary data. The recovery of the initial pressure rise distribution tends to be an ill-posed problem in the presence of noise and when limited independent data is available, necessitating regularization. The standard regularization schemes include Tikhonov, ℓ 1 -norm, and total-variation. These regularization schemes weigh the singular values equally irrespective of the noise level present in the data. This paper introduces a fractional framework to weigh the singular values with respect to a fractional power. This fractional framework was implemented for Tikhonov, ℓ 1 -norm, and total-variation regularization schemes. Moreover, an automated method for choosing the fractional power was also proposed. It was shown theoretically and with numerical experiments that the fractional power is inversely related to the data noise level for fractional Tikhonov scheme. The fractional framework outperforms the standard regularization schemes, Tikhonov, ℓ 1 -norm, and total-variation by 54% in numerical simulations, experimental phantoms, and in vivo rat data in terms of observed contrast/signal-to-noise-ratio of the reconstructed images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30582534</pmid><doi>10.1109/TMI.2018.2889314</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1034-7246</orcidid><orcidid>https://orcid.org/0000-0003-2865-5714</orcidid><orcidid>https://orcid.org/0000-0002-2375-154X</orcidid><orcidid>https://orcid.org/0000-0003-4810-352X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1935-1947
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_8586926
source IEEE Electronic Library (IEL)
subjects Acoustic noise
Acoustics
Algorithms
Animals
Biological tissues
Brain - diagnostic imaging
compressive sensing
Computer Simulation
Data recovery
Detectors
fractional methods
Ill posed problems
Image contrast
Image processing
Image Processing, Computer-Assisted - methods
Image reconstruction
Imaging
Initial pressure
Noise
Noise levels
Noise standards
Phantoms, Imaging
Photoacoustic effect
Photoacoustic Techniques - methods
Photoacoustic tomography
Pressure
Rats
Regularization
regularization theory
Signal to noise ratio
Stress concentration
Tomography - methods
Variation
title Fractional Regularization to Improve Photoacoustic Tomographic Image Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Regularization%20to%20Improve%20Photoacoustic%20Tomographic%20Image%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Prakash,%20Jaya&rft.date=2019-08-01&rft.volume=38&rft.issue=8&rft.spage=1935&rft.epage=1947&rft.pages=1935-1947&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2889314&rft_dat=%3Cproquest_RIE%3E2268432880%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268432880&rft_id=info:pmid/30582534&rft_ieee_id=8586926&rfr_iscdi=true