LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration

This paper presents a novel virtual synchronous machine controller for converters in power systems with a high share of renewable resources. Using a linear quadratic regulator-based optimization technique, the optimal state feedback gain is determined to adaptively adjust the emulated inertia and da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2019-07, Vol.10 (3), p.1501-1512
Hauptverfasser: Markovic, Uros, Chu, Zhongda, Aristidou, Petros, Hug, Gabriela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1512
container_issue 3
container_start_page 1501
container_title IEEE transactions on sustainable energy
container_volume 10
creator Markovic, Uros
Chu, Zhongda
Aristidou, Petros
Hug, Gabriela
description This paper presents a novel virtual synchronous machine controller for converters in power systems with a high share of renewable resources. Using a linear quadratic regulator-based optimization technique, the optimal state feedback gain is determined to adaptively adjust the emulated inertia and damping constants according to the frequency disturbance in the system, while simultaneously preserving a tradeoff between the critical frequency limits and the required control effort. Two control designs are presented and compared against the open-loop model. The proposed controllers are integrated into a state-of-the-art converter control scheme and verified through electromagnetic transient (EMT) simulations.
doi_str_mv 10.1109/TSTE.2018.2887147
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8579100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8579100</ieee_id><sourcerecordid>2244350522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-4ae19626066d28db643217cb54cd05c239c8c59ea346edc8158087e8cc2a3e2b3</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiUT5AMZLE8-L_be77REJCglGFNRjU7qDuwS22HYxfHuXQJjLTPLem5f8ELqjpEcpUY_z2XzYY4TKHpMypyK_QB2qhEo44fnl-WbqGnVDWJF2OOcZJx2kJ-8fyZMJUOB-Ybax2gH-qnxszBrP9rUtvatdE_CrsWVVA146j6fuD3yrhgibgL-rWOJR9VPicb0DH1tpCjVEb2Ll6lt0tTTrAN3TvkGfz8P5YJRM3l7Gg_4ksVyKmAgDVGUsI1lWMFksMsEZze0iFbYgqWVcWWlTBYaLDAoraSqJzEFaywwHtuA36OH4d-vdbwMh6pVrfN1WasaE4ClJGWtd9Oiy3oXgYam3vtoYv9eU6ANKfUCpDyj1CWWbuT9mKgA4-2WaK9pi_AcZ629A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244350522</pqid></control><display><type>article</type><title>LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration</title><source>IEEE Electronic Library (IEL)</source><creator>Markovic, Uros ; Chu, Zhongda ; Aristidou, Petros ; Hug, Gabriela</creator><creatorcontrib>Markovic, Uros ; Chu, Zhongda ; Aristidou, Petros ; Hug, Gabriela</creatorcontrib><description>This paper presents a novel virtual synchronous machine controller for converters in power systems with a high share of renewable resources. Using a linear quadratic regulator-based optimization technique, the optimal state feedback gain is determined to adaptively adjust the emulated inertia and damping constants according to the frequency disturbance in the system, while simultaneously preserving a tradeoff between the critical frequency limits and the required control effort. Two control designs are presented and compared against the open-loop model. The proposed controllers are integrated into a state-of-the-art converter control scheme and verified through electromagnetic transient (EMT) simulations.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2018.2887147</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; adaptive control ; Adaptive systems ; Computer simulation ; Converters ; Damping ; Frequency control ; Frequency conversion ; Generators ; Linear quadratic regulator ; Linear-quadratic regulator (LQR) ; Mathematical model ; Optimization ; Optimization techniques ; Renewable resources ; State feedback ; Sustainable yield ; swing equation ; Synchronous machines ; virtual synchronous machine (VSM) ; voltage source converter (VSC)</subject><ispartof>IEEE transactions on sustainable energy, 2019-07, Vol.10 (3), p.1501-1512</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-4ae19626066d28db643217cb54cd05c239c8c59ea346edc8158087e8cc2a3e2b3</citedby><cites>FETCH-LOGICAL-c384t-4ae19626066d28db643217cb54cd05c239c8c59ea346edc8158087e8cc2a3e2b3</cites><orcidid>0000-0003-4429-0225 ; 0000-0003-2894-4014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8579100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8579100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Markovic, Uros</creatorcontrib><creatorcontrib>Chu, Zhongda</creatorcontrib><creatorcontrib>Aristidou, Petros</creatorcontrib><creatorcontrib>Hug, Gabriela</creatorcontrib><title>LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>This paper presents a novel virtual synchronous machine controller for converters in power systems with a high share of renewable resources. Using a linear quadratic regulator-based optimization technique, the optimal state feedback gain is determined to adaptively adjust the emulated inertia and damping constants according to the frequency disturbance in the system, while simultaneously preserving a tradeoff between the critical frequency limits and the required control effort. Two control designs are presented and compared against the open-loop model. The proposed controllers are integrated into a state-of-the-art converter control scheme and verified through electromagnetic transient (EMT) simulations.</description><subject>Adaptation models</subject><subject>adaptive control</subject><subject>Adaptive systems</subject><subject>Computer simulation</subject><subject>Converters</subject><subject>Damping</subject><subject>Frequency control</subject><subject>Frequency conversion</subject><subject>Generators</subject><subject>Linear quadratic regulator</subject><subject>Linear-quadratic regulator (LQR)</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Renewable resources</subject><subject>State feedback</subject><subject>Sustainable yield</subject><subject>swing equation</subject><subject>Synchronous machines</subject><subject>virtual synchronous machine (VSM)</subject><subject>voltage source converter (VSC)</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiUT5AMZLE8-L_be77REJCglGFNRjU7qDuwS22HYxfHuXQJjLTPLem5f8ELqjpEcpUY_z2XzYY4TKHpMypyK_QB2qhEo44fnl-WbqGnVDWJF2OOcZJx2kJ-8fyZMJUOB-Ybax2gH-qnxszBrP9rUtvatdE_CrsWVVA146j6fuD3yrhgibgL-rWOJR9VPicb0DH1tpCjVEb2Ll6lt0tTTrAN3TvkGfz8P5YJRM3l7Gg_4ksVyKmAgDVGUsI1lWMFksMsEZze0iFbYgqWVcWWlTBYaLDAoraSqJzEFaywwHtuA36OH4d-vdbwMh6pVrfN1WasaE4ClJGWtd9Oiy3oXgYam3vtoYv9eU6ANKfUCpDyj1CWWbuT9mKgA4-2WaK9pi_AcZ629A</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Markovic, Uros</creator><creator>Chu, Zhongda</creator><creator>Aristidou, Petros</creator><creator>Hug, Gabriela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4429-0225</orcidid><orcidid>https://orcid.org/0000-0003-2894-4014</orcidid></search><sort><creationdate>20190701</creationdate><title>LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration</title><author>Markovic, Uros ; Chu, Zhongda ; Aristidou, Petros ; Hug, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-4ae19626066d28db643217cb54cd05c239c8c59ea346edc8158087e8cc2a3e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>adaptive control</topic><topic>Adaptive systems</topic><topic>Computer simulation</topic><topic>Converters</topic><topic>Damping</topic><topic>Frequency control</topic><topic>Frequency conversion</topic><topic>Generators</topic><topic>Linear quadratic regulator</topic><topic>Linear-quadratic regulator (LQR)</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Renewable resources</topic><topic>State feedback</topic><topic>Sustainable yield</topic><topic>swing equation</topic><topic>Synchronous machines</topic><topic>virtual synchronous machine (VSM)</topic><topic>voltage source converter (VSC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markovic, Uros</creatorcontrib><creatorcontrib>Chu, Zhongda</creatorcontrib><creatorcontrib>Aristidou, Petros</creatorcontrib><creatorcontrib>Hug, Gabriela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Markovic, Uros</au><au>Chu, Zhongda</au><au>Aristidou, Petros</au><au>Hug, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>10</volume><issue>3</issue><spage>1501</spage><epage>1512</epage><pages>1501-1512</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>This paper presents a novel virtual synchronous machine controller for converters in power systems with a high share of renewable resources. Using a linear quadratic regulator-based optimization technique, the optimal state feedback gain is determined to adaptively adjust the emulated inertia and damping constants according to the frequency disturbance in the system, while simultaneously preserving a tradeoff between the critical frequency limits and the required control effort. Two control designs are presented and compared against the open-loop model. The proposed controllers are integrated into a state-of-the-art converter control scheme and verified through electromagnetic transient (EMT) simulations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2018.2887147</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4429-0225</orcidid><orcidid>https://orcid.org/0000-0003-2894-4014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2019-07, Vol.10 (3), p.1501-1512
issn 1949-3029
1949-3037
language eng
recordid cdi_ieee_primary_8579100
source IEEE Electronic Library (IEL)
subjects Adaptation models
adaptive control
Adaptive systems
Computer simulation
Converters
Damping
Frequency control
Frequency conversion
Generators
Linear quadratic regulator
Linear-quadratic regulator (LQR)
Mathematical model
Optimization
Optimization techniques
Renewable resources
State feedback
Sustainable yield
swing equation
Synchronous machines
virtual synchronous machine (VSM)
voltage source converter (VSC)
title LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LQR-Based%20Adaptive%20Virtual%20Synchronous%20Machine%20for%20Power%20Systems%20With%20High%20Inverter%20Penetration&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Markovic,%20Uros&rft.date=2019-07-01&rft.volume=10&rft.issue=3&rft.spage=1501&rft.epage=1512&rft.pages=1501-1512&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2018.2887147&rft_dat=%3Cproquest_RIE%3E2244350522%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244350522&rft_id=info:pmid/&rft_ieee_id=8579100&rfr_iscdi=true