Overlapped multi-neural-network: a case study

Presents a case study for the overlapped multi-neural-network (OMNN). An overlapped multi-neural-network, structurally, is the same as an ordinary feedforward neural network, but it is considered as one consisting of several subnets. All subnets have the same input-output units, but some different h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hu, J., Hirasawa, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125 vol.1
container_issue
container_start_page 120
container_title
container_volume 1
creator Hu, J.
Hirasawa, K.
description Presents a case study for the overlapped multi-neural-network (OMNN). An overlapped multi-neural-network, structurally, is the same as an ordinary feedforward neural network, but it is considered as one consisting of several subnets. All subnets have the same input-output units, but some different hidden units. Input-output spaces are partitioned into several parts, each of which corresponds to one subnet of OMNN. Numerical simulations show that such an OMNN has superior performance in that it has better presentation ability than an ordinary neural network and better generalization ability than a non-overlapped multi-neural-network.
doi_str_mv 10.1109/IJCNN.2000.857824
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_857824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>857824</ieee_id><sourcerecordid>857824</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-c76846e7bc3164bee9026ea994a9b971b9c621c21aa32a1ecf79920d19e8aad33</originalsourceid><addsrcrecordid>eNotj8lOwzAQhi0WiarkAeCUF3Dw2PEy3FDEUlS1FzhXE2cqBVKInATUtydSOX2HX_8mxA2oAkDh3eq12mwKrZQqgvVBl2diAdYGaVDpc5GhD8o7tMoB-otZUxikt95diWwYPmYfKGOdhoWQ2x9OHfU9N_lh6sZWfvGUqJsx_n6nz_uc8kgD58M4NcdrcbmnbuDsn0vx_vT4Vr3I9fZ5VT2sZQtejzJ6F0rHvo4GXFkzz7McE2JJWKOHGuNcHjUQGU3Ace8RtWoAORA1xizF7Sm3ZeZdn9oDpePu9NX8AR-VRRY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Overlapped multi-neural-network: a case study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hu, J. ; Hirasawa, K.</creator><creatorcontrib>Hu, J. ; Hirasawa, K.</creatorcontrib><description>Presents a case study for the overlapped multi-neural-network (OMNN). An overlapped multi-neural-network, structurally, is the same as an ordinary feedforward neural network, but it is considered as one consisting of several subnets. All subnets have the same input-output units, but some different hidden units. Input-output spaces are partitioned into several parts, each of which corresponds to one subnet of OMNN. Numerical simulations show that such an OMNN has superior performance in that it has better presentation ability than an ordinary neural network and better generalization ability than a non-overlapped multi-neural-network.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.857824</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer aided software engineering ; Feedforward neural networks ; Multi-layer neural network ; Neural networks ; Numerical simulation ; Partitioning algorithms ; Pattern recognition ; Self organizing feature maps ; System identification ; Systems engineering and theory</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.1, p.120-125 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/857824$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2053,4037,4038,27907,54902</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/857824$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, J.</creatorcontrib><creatorcontrib>Hirasawa, K.</creatorcontrib><title>Overlapped multi-neural-network: a case study</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>Presents a case study for the overlapped multi-neural-network (OMNN). An overlapped multi-neural-network, structurally, is the same as an ordinary feedforward neural network, but it is considered as one consisting of several subnets. All subnets have the same input-output units, but some different hidden units. Input-output spaces are partitioned into several parts, each of which corresponds to one subnet of OMNN. Numerical simulations show that such an OMNN has superior performance in that it has better presentation ability than an ordinary neural network and better generalization ability than a non-overlapped multi-neural-network.</description><subject>Computer aided software engineering</subject><subject>Feedforward neural networks</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Numerical simulation</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Self organizing feature maps</subject><subject>System identification</subject><subject>Systems engineering and theory</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8lOwzAQhi0WiarkAeCUF3Dw2PEy3FDEUlS1FzhXE2cqBVKInATUtydSOX2HX_8mxA2oAkDh3eq12mwKrZQqgvVBl2diAdYGaVDpc5GhD8o7tMoB-otZUxikt95diWwYPmYfKGOdhoWQ2x9OHfU9N_lh6sZWfvGUqJsx_n6nz_uc8kgD58M4NcdrcbmnbuDsn0vx_vT4Vr3I9fZ5VT2sZQtejzJ6F0rHvo4GXFkzz7McE2JJWKOHGuNcHjUQGU3Ace8RtWoAORA1xizF7Sm3ZeZdn9oDpePu9NX8AR-VRRY</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Hu, J.</creator><creator>Hirasawa, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Overlapped multi-neural-network: a case study</title><author>Hu, J. ; Hirasawa, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-c76846e7bc3164bee9026ea994a9b971b9c621c21aa32a1ecf79920d19e8aad33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computer aided software engineering</topic><topic>Feedforward neural networks</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Numerical simulation</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Self organizing feature maps</topic><topic>System identification</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, J.</creatorcontrib><creatorcontrib>Hirasawa, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, J.</au><au>Hirasawa, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Overlapped multi-neural-network: a case study</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>120</spage><epage>125 vol.1</epage><pages>120-125 vol.1</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>Presents a case study for the overlapped multi-neural-network (OMNN). An overlapped multi-neural-network, structurally, is the same as an ordinary feedforward neural network, but it is considered as one consisting of several subnets. All subnets have the same input-output units, but some different hidden units. Input-output spaces are partitioned into several parts, each of which corresponds to one subnet of OMNN. Numerical simulations show that such an OMNN has superior performance in that it has better presentation ability than an ordinary neural network and better generalization ability than a non-overlapped multi-neural-network.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.857824</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.1, p.120-125 vol.1
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_857824
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer aided software engineering
Feedforward neural networks
Multi-layer neural network
Neural networks
Numerical simulation
Partitioning algorithms
Pattern recognition
Self organizing feature maps
System identification
Systems engineering and theory
title Overlapped multi-neural-network: a case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Overlapped%20multi-neural-network:%20a%20case%20study&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Hu,%20J.&rft.date=2000&rft.volume=1&rft.spage=120&rft.epage=125%20vol.1&rft.pages=120-125%20vol.1&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.857824&rft_dat=%3Cieee_6IE%3E857824%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=857824&rfr_iscdi=true