A Fully Flexible Circuit Implementation of Clique-Based Neural Networks in 65-nm CMOS

Clique-based neural networks implement low-complexity functions working with a reduced connectivity between neurons. Thus, they address very specific applications operating with a very low-energy budget. However, the implementation in the state of the art is not flexible and a fabricated circuit is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2019-05, Vol.66 (5), p.1704-1715
Hauptverfasser: Larras, Benoit, Chollet, Paul, Lahuec, Cyril, Seguin, Fabrice, Arzel, Matthieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1715
container_issue 5
container_start_page 1704
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 66
creator Larras, Benoit
Chollet, Paul
Lahuec, Cyril
Seguin, Fabrice
Arzel, Matthieu
description Clique-based neural networks implement low-complexity functions working with a reduced connectivity between neurons. Thus, they address very specific applications operating with a very low-energy budget. However, the implementation in the state of the art is not flexible and a fabricated circuit is only usable in a unique use case. Besides, the silicon area of hardwired circuits grows exponentially with the number of implemented neurons that is prohibitive for embedded applications. This paper proposes a flexible and iterative neural architecture capable of implementing multiple types of clique-based neural networks of up to 3968 neurons. The circuit has been integrated in an ST 65-nm CMOS ASIC and occupies a 0.21-mm 2 silicon surface area. The proper functioning of the circuit is illustrated using two application cases: a keyword recovery application and an electrocardiogram classification. The neurons outputs are updated 83 ns after a stimulation, and a neuron needs an energy of 115 fJ to propagate a change at the input to its output.
doi_str_mv 10.1109/TCSI.2018.2881508
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8577022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8577022</ieee_id><sourcerecordid>2211119846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cea8c8c6d1a5382d63c5a74d9bbd13133a13733eaa22cce3d6ce67f23c5849393</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYufuRhL0tEoVKhi7Zry3UmkouTFDsR9O9JVMRs7izOPHQQumd0xhhVT9tis5xxyuSMS8lSKi_QhKWpJFTS7HLsE0Wk4PIa3cR4oJQrKtgE7eZ40Xt_wgsPP27vARcu2N51eFkfPdTQdKZzbYPbChfeffVAnk2EEn9AH4wfovtuw2fErsFZSpoaF-_rzS26qoyPcPeXU7RbvGyLN7Javy6L-YpYrkRHLBhppc1KZlIheZkJm5o8KdV-XzLBhDBM5EKAMZxbC6LMLGR5xQdMJkooMUWP573H0A6vxU4f2j40w0nNORtKySQbKHambGhjDFDpY3C1CSfNqB7t6dGeHu3pP3vDzMN5xgHAPy_TPKeci187p2nt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211119846</pqid></control><display><type>article</type><title>A Fully Flexible Circuit Implementation of Clique-Based Neural Networks in 65-nm CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Larras, Benoit ; Chollet, Paul ; Lahuec, Cyril ; Seguin, Fabrice ; Arzel, Matthieu</creator><creatorcontrib>Larras, Benoit ; Chollet, Paul ; Lahuec, Cyril ; Seguin, Fabrice ; Arzel, Matthieu</creatorcontrib><description>Clique-based neural networks implement low-complexity functions working with a reduced connectivity between neurons. Thus, they address very specific applications operating with a very low-energy budget. However, the implementation in the state of the art is not flexible and a fabricated circuit is only usable in a unique use case. Besides, the silicon area of hardwired circuits grows exponentially with the number of implemented neurons that is prohibitive for embedded applications. This paper proposes a flexible and iterative neural architecture capable of implementing multiple types of clique-based neural networks of up to 3968 neurons. The circuit has been integrated in an ST 65-nm CMOS ASIC and occupies a 0.21-mm 2 silicon surface area. The proper functioning of the circuit is illustrated using two application cases: a keyword recovery application and an electrocardiogram classification. The neurons outputs are updated 83 ns after a stimulation, and a neuron needs an energy of 115 fJ to propagate a change at the input to its output.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2018.2881508</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>analog/mixed-signal circuit ; Biological neural networks ; Circuits ; classification circuit ; clique-based neural networks ; CMOS ; Complexity theory ; Electrocardiography ; Energy budget ; iterative circuit structure ; Leakage currents ; Neural networks ; Neural networks circuit ; Neurons ; Silicon ; Synapses</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2019-05, Vol.66 (5), p.1704-1715</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cea8c8c6d1a5382d63c5a74d9bbd13133a13733eaa22cce3d6ce67f23c5849393</citedby><cites>FETCH-LOGICAL-c293t-cea8c8c6d1a5382d63c5a74d9bbd13133a13733eaa22cce3d6ce67f23c5849393</cites><orcidid>0000-0003-2501-8656 ; 0000-0003-0470-9693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8577022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8577022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Larras, Benoit</creatorcontrib><creatorcontrib>Chollet, Paul</creatorcontrib><creatorcontrib>Lahuec, Cyril</creatorcontrib><creatorcontrib>Seguin, Fabrice</creatorcontrib><creatorcontrib>Arzel, Matthieu</creatorcontrib><title>A Fully Flexible Circuit Implementation of Clique-Based Neural Networks in 65-nm CMOS</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Clique-based neural networks implement low-complexity functions working with a reduced connectivity between neurons. Thus, they address very specific applications operating with a very low-energy budget. However, the implementation in the state of the art is not flexible and a fabricated circuit is only usable in a unique use case. Besides, the silicon area of hardwired circuits grows exponentially with the number of implemented neurons that is prohibitive for embedded applications. This paper proposes a flexible and iterative neural architecture capable of implementing multiple types of clique-based neural networks of up to 3968 neurons. The circuit has been integrated in an ST 65-nm CMOS ASIC and occupies a 0.21-mm 2 silicon surface area. The proper functioning of the circuit is illustrated using two application cases: a keyword recovery application and an electrocardiogram classification. The neurons outputs are updated 83 ns after a stimulation, and a neuron needs an energy of 115 fJ to propagate a change at the input to its output.</description><subject>analog/mixed-signal circuit</subject><subject>Biological neural networks</subject><subject>Circuits</subject><subject>classification circuit</subject><subject>clique-based neural networks</subject><subject>CMOS</subject><subject>Complexity theory</subject><subject>Electrocardiography</subject><subject>Energy budget</subject><subject>iterative circuit structure</subject><subject>Leakage currents</subject><subject>Neural networks</subject><subject>Neural networks circuit</subject><subject>Neurons</subject><subject>Silicon</subject><subject>Synapses</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYufuRhL0tEoVKhi7Zry3UmkouTFDsR9O9JVMRs7izOPHQQumd0xhhVT9tis5xxyuSMS8lSKi_QhKWpJFTS7HLsE0Wk4PIa3cR4oJQrKtgE7eZ40Xt_wgsPP27vARcu2N51eFkfPdTQdKZzbYPbChfeffVAnk2EEn9AH4wfovtuw2fErsFZSpoaF-_rzS26qoyPcPeXU7RbvGyLN7Javy6L-YpYrkRHLBhppc1KZlIheZkJm5o8KdV-XzLBhDBM5EKAMZxbC6LMLGR5xQdMJkooMUWP573H0A6vxU4f2j40w0nNORtKySQbKHambGhjDFDpY3C1CSfNqB7t6dGeHu3pP3vDzMN5xgHAPy_TPKeci187p2nt</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Larras, Benoit</creator><creator>Chollet, Paul</creator><creator>Lahuec, Cyril</creator><creator>Seguin, Fabrice</creator><creator>Arzel, Matthieu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2501-8656</orcidid><orcidid>https://orcid.org/0000-0003-0470-9693</orcidid></search><sort><creationdate>20190501</creationdate><title>A Fully Flexible Circuit Implementation of Clique-Based Neural Networks in 65-nm CMOS</title><author>Larras, Benoit ; Chollet, Paul ; Lahuec, Cyril ; Seguin, Fabrice ; Arzel, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cea8c8c6d1a5382d63c5a74d9bbd13133a13733eaa22cce3d6ce67f23c5849393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>analog/mixed-signal circuit</topic><topic>Biological neural networks</topic><topic>Circuits</topic><topic>classification circuit</topic><topic>clique-based neural networks</topic><topic>CMOS</topic><topic>Complexity theory</topic><topic>Electrocardiography</topic><topic>Energy budget</topic><topic>iterative circuit structure</topic><topic>Leakage currents</topic><topic>Neural networks</topic><topic>Neural networks circuit</topic><topic>Neurons</topic><topic>Silicon</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larras, Benoit</creatorcontrib><creatorcontrib>Chollet, Paul</creatorcontrib><creatorcontrib>Lahuec, Cyril</creatorcontrib><creatorcontrib>Seguin, Fabrice</creatorcontrib><creatorcontrib>Arzel, Matthieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Larras, Benoit</au><au>Chollet, Paul</au><au>Lahuec, Cyril</au><au>Seguin, Fabrice</au><au>Arzel, Matthieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fully Flexible Circuit Implementation of Clique-Based Neural Networks in 65-nm CMOS</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>66</volume><issue>5</issue><spage>1704</spage><epage>1715</epage><pages>1704-1715</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Clique-based neural networks implement low-complexity functions working with a reduced connectivity between neurons. Thus, they address very specific applications operating with a very low-energy budget. However, the implementation in the state of the art is not flexible and a fabricated circuit is only usable in a unique use case. Besides, the silicon area of hardwired circuits grows exponentially with the number of implemented neurons that is prohibitive for embedded applications. This paper proposes a flexible and iterative neural architecture capable of implementing multiple types of clique-based neural networks of up to 3968 neurons. The circuit has been integrated in an ST 65-nm CMOS ASIC and occupies a 0.21-mm 2 silicon surface area. The proper functioning of the circuit is illustrated using two application cases: a keyword recovery application and an electrocardiogram classification. The neurons outputs are updated 83 ns after a stimulation, and a neuron needs an energy of 115 fJ to propagate a change at the input to its output.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2018.2881508</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2501-8656</orcidid><orcidid>https://orcid.org/0000-0003-0470-9693</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2019-05, Vol.66 (5), p.1704-1715
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_8577022
source IEEE Electronic Library (IEL)
subjects analog/mixed-signal circuit
Biological neural networks
Circuits
classification circuit
clique-based neural networks
CMOS
Complexity theory
Electrocardiography
Energy budget
iterative circuit structure
Leakage currents
Neural networks
Neural networks circuit
Neurons
Silicon
Synapses
title A Fully Flexible Circuit Implementation of Clique-Based Neural Networks in 65-nm CMOS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fully%20Flexible%20Circuit%20Implementation%20of%20Clique-Based%20Neural%20Networks%20in%2065-nm%20CMOS&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Larras,%20Benoit&rft.date=2019-05-01&rft.volume=66&rft.issue=5&rft.spage=1704&rft.epage=1715&rft.pages=1704-1715&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2018.2881508&rft_dat=%3Cproquest_RIE%3E2211119846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211119846&rft_id=info:pmid/&rft_ieee_id=8577022&rfr_iscdi=true