Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization

In this paper, a design method is presented for path-following control of underactuated autonomous underwater vehicles subject to velocity and input constraints, as well as internal and external disturbances. In the guidance loop, a kinematic control law of the desired surge speed and pitch rate is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-11, Vol.66 (11), p.8724-8732
Hauptverfasser: Peng, Zhouhua, Wang, Jun, Han, Qing-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8732
container_issue 11
container_start_page 8724
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator Peng, Zhouhua
Wang, Jun
Han, Qing-Long
description In this paper, a design method is presented for path-following control of underactuated autonomous underwater vehicles subject to velocity and input constraints, as well as internal and external disturbances. In the guidance loop, a kinematic control law of the desired surge speed and pitch rate is derived based on a backstepping technique and a line-of-sight guidance principle. In the control loop, an extended state observer is developed to estimate the extended state composed of unknown internal dynamics and external disturbances. Then, a disturbance rejection control law is constructed using the extended state observer. To bridge the guidance loop and the control loop, a reference governor is proposed for computing optimal guidance signals within the velocity and input constraints. The reference governor is formulated as a quadratically constrained optimization problem. A projection neural network is employed for solving the optimization problem in real time. Simulation results illustrate the effectiveness of the proposed method for path-following control of autonomous underwater vehicles subject to constraints and disturbances simultaneously in the vertical plane.
doi_str_mv 10.1109/TIE.2018.2885726
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8575162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8575162</ieee_id><sourcerecordid>2253458731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-182282833c24db9ca334c6b1f22f1358f4a40258163d73ff7a1c35661d129dd83</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2de0rTpcYxNB8MJbl5LlqYuo0tmkjrmyT_djg1PD977fr8HH0L3QAYApHhaTMcDSkAMqBA8p9kF6gHneVIUqbhEPUJzkRCSZtfoJoQNIZBy4D30-ybjOpm4pnF7Yz_xyNnoXYNdjYdtdNZtXRvw0lba72XUHn_otVGNDvi9XW20iji6btc4ZeIBS1vhqd218dgTopfGxoC_jcSvuvWuOli5NQrPd9FszY-MxtlbdFXLJui78-yj5WS8GL0ks_nzdDScJYoWEBMQlAoqGFM0rVaFkoylKltBTWkNjIs6lSmhXEDGqpzVdS5BMZ5lUAEtqkqwPno89e68-2p1iOXGtd52L0tKOUu5yBl0FDlRyrsQvK7LnTdb6Q8lkPLouew8l0fP5dlzF3k4RYzW-h_vbhwyyv4A44h6xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253458731</pqid></control><display><type>article</type><title>Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Zhouhua ; Wang, Jun ; Han, Qing-Long</creator><creatorcontrib>Peng, Zhouhua ; Wang, Jun ; Han, Qing-Long</creatorcontrib><description>In this paper, a design method is presented for path-following control of underactuated autonomous underwater vehicles subject to velocity and input constraints, as well as internal and external disturbances. In the guidance loop, a kinematic control law of the desired surge speed and pitch rate is derived based on a backstepping technique and a line-of-sight guidance principle. In the control loop, an extended state observer is developed to estimate the extended state composed of unknown internal dynamics and external disturbances. Then, a disturbance rejection control law is constructed using the extended state observer. To bridge the guidance loop and the control loop, a reference governor is proposed for computing optimal guidance signals within the velocity and input constraints. The reference governor is formulated as a quadratically constrained optimization problem. A projection neural network is employed for solving the optimization problem in real time. Simulation results illustrate the effectiveness of the proposed method for path-following control of autonomous underwater vehicles subject to constraints and disturbances simultaneously in the vertical plane.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2885726</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous underwater vehicles ; Autonomous underwater vehicles (AUVs) ; Bridge construction ; Computer simulation ; Constraints ; Control theory ; Design optimization ; Disturbances ; extended state observer (ESO) ; input and state constraints ; Kinematics ; Kinetic theory ; Neural networks ; neurodynamic optimization ; Neurodynamics ; Observers ; Optimization ; path following ; State observers ; Surges</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-11, Vol.66 (11), p.8724-8732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-182282833c24db9ca334c6b1f22f1358f4a40258163d73ff7a1c35661d129dd83</citedby><cites>FETCH-LOGICAL-c291t-182282833c24db9ca334c6b1f22f1358f4a40258163d73ff7a1c35661d129dd83</cites><orcidid>0000-0002-7207-0716 ; 0000-0002-1305-5735 ; 0000-0003-4468-7281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8575162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8575162$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Zhouhua</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><title>Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, a design method is presented for path-following control of underactuated autonomous underwater vehicles subject to velocity and input constraints, as well as internal and external disturbances. In the guidance loop, a kinematic control law of the desired surge speed and pitch rate is derived based on a backstepping technique and a line-of-sight guidance principle. In the control loop, an extended state observer is developed to estimate the extended state composed of unknown internal dynamics and external disturbances. Then, a disturbance rejection control law is constructed using the extended state observer. To bridge the guidance loop and the control loop, a reference governor is proposed for computing optimal guidance signals within the velocity and input constraints. The reference governor is formulated as a quadratically constrained optimization problem. A projection neural network is employed for solving the optimization problem in real time. Simulation results illustrate the effectiveness of the proposed method for path-following control of autonomous underwater vehicles subject to constraints and disturbances simultaneously in the vertical plane.</description><subject>Autonomous underwater vehicles</subject><subject>Autonomous underwater vehicles (AUVs)</subject><subject>Bridge construction</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Control theory</subject><subject>Design optimization</subject><subject>Disturbances</subject><subject>extended state observer (ESO)</subject><subject>input and state constraints</subject><subject>Kinematics</subject><subject>Kinetic theory</subject><subject>Neural networks</subject><subject>neurodynamic optimization</subject><subject>Neurodynamics</subject><subject>Observers</subject><subject>Optimization</subject><subject>path following</subject><subject>State observers</subject><subject>Surges</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2de0rTpcYxNB8MJbl5LlqYuo0tmkjrmyT_djg1PD977fr8HH0L3QAYApHhaTMcDSkAMqBA8p9kF6gHneVIUqbhEPUJzkRCSZtfoJoQNIZBy4D30-ybjOpm4pnF7Yz_xyNnoXYNdjYdtdNZtXRvw0lba72XUHn_otVGNDvi9XW20iji6btc4ZeIBS1vhqd218dgTopfGxoC_jcSvuvWuOli5NQrPd9FszY-MxtlbdFXLJui78-yj5WS8GL0ks_nzdDScJYoWEBMQlAoqGFM0rVaFkoylKltBTWkNjIs6lSmhXEDGqpzVdS5BMZ5lUAEtqkqwPno89e68-2p1iOXGtd52L0tKOUu5yBl0FDlRyrsQvK7LnTdb6Q8lkPLouew8l0fP5dlzF3k4RYzW-h_vbhwyyv4A44h6xA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Peng, Zhouhua</creator><creator>Wang, Jun</creator><creator>Han, Qing-Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0002-1305-5735</orcidid><orcidid>https://orcid.org/0000-0003-4468-7281</orcidid></search><sort><creationdate>20191101</creationdate><title>Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization</title><author>Peng, Zhouhua ; Wang, Jun ; Han, Qing-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-182282833c24db9ca334c6b1f22f1358f4a40258163d73ff7a1c35661d129dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autonomous underwater vehicles</topic><topic>Autonomous underwater vehicles (AUVs)</topic><topic>Bridge construction</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Control theory</topic><topic>Design optimization</topic><topic>Disturbances</topic><topic>extended state observer (ESO)</topic><topic>input and state constraints</topic><topic>Kinematics</topic><topic>Kinetic theory</topic><topic>Neural networks</topic><topic>neurodynamic optimization</topic><topic>Neurodynamics</topic><topic>Observers</topic><topic>Optimization</topic><topic>path following</topic><topic>State observers</topic><topic>Surges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhouhua</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Zhouhua</au><au>Wang, Jun</au><au>Han, Qing-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>66</volume><issue>11</issue><spage>8724</spage><epage>8732</epage><pages>8724-8732</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, a design method is presented for path-following control of underactuated autonomous underwater vehicles subject to velocity and input constraints, as well as internal and external disturbances. In the guidance loop, a kinematic control law of the desired surge speed and pitch rate is derived based on a backstepping technique and a line-of-sight guidance principle. In the control loop, an extended state observer is developed to estimate the extended state composed of unknown internal dynamics and external disturbances. Then, a disturbance rejection control law is constructed using the extended state observer. To bridge the guidance loop and the control loop, a reference governor is proposed for computing optimal guidance signals within the velocity and input constraints. The reference governor is formulated as a quadratically constrained optimization problem. A projection neural network is employed for solving the optimization problem in real time. Simulation results illustrate the effectiveness of the proposed method for path-following control of autonomous underwater vehicles subject to constraints and disturbances simultaneously in the vertical plane.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2885726</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0002-1305-5735</orcidid><orcidid>https://orcid.org/0000-0003-4468-7281</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-11, Vol.66 (11), p.8724-8732
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_8575162
source IEEE Electronic Library (IEL)
subjects Autonomous underwater vehicles
Autonomous underwater vehicles (AUVs)
Bridge construction
Computer simulation
Constraints
Control theory
Design optimization
Disturbances
extended state observer (ESO)
input and state constraints
Kinematics
Kinetic theory
Neural networks
neurodynamic optimization
Neurodynamics
Observers
Optimization
path following
State observers
Surges
title Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path-Following%20Control%20of%20Autonomous%20Underwater%20Vehicles%20Subject%20to%20Velocity%20and%20Input%20Constraints%20via%20Neurodynamic%20Optimization&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Peng,%20Zhouhua&rft.date=2019-11-01&rft.volume=66&rft.issue=11&rft.spage=8724&rft.epage=8732&rft.pages=8724-8732&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2885726&rft_dat=%3Cproquest_RIE%3E2253458731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253458731&rft_id=info:pmid/&rft_ieee_id=8575162&rfr_iscdi=true