Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer

The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2019-01, Vol.66 (1), p.505-511
Hauptverfasser: Chang, Ching-Hong, Lee, Yu-Lin, Wang, Zih-Fong, Liu, Rong-Chau, Tsai, Jung-Hui, Liu, Wen-Chau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 1
container_start_page 505
container_title IEEE transactions on electron devices
container_volume 66
creator Chang, Ching-Hong
Lee, Yu-Lin
Wang, Zih-Fong
Liu, Rong-Chau
Tsai, Jung-Hui
Liu, Wen-Chau
description The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications.
doi_str_mv 10.1109/TED.2018.2882802
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8573125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8573125</ieee_id><sourcerecordid>2159994180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-b07faab09f92d2d3d525fc22c078ac78bdd37d30d23db2cc37d9ca728f9f4f3c3</originalsourceid><addsrcrecordid>eNotj9tKAzEQhoMoWA_3gjcBb902h91ucumhHqAeQMXLMk0mNrK7qUms9E18DJ_BJ3NRr34-_m9mGEIOOBtyzvTocXI-FIyroVBKKCY2yIBXVV3ocTneJAPWV4WWSm6TnZReexyXpRiQz3uMLsQWOoP0ul3GsMIWu0yDo5dwW5xCQkun_mWRi0nrc_bdCz33wWKizz4vKNAbb2JYhAbpSYywPqZl9f1FH7zFD2iadEyhs7324O8EvYUuLCFmbxoc_Q6m5QIj0ntIya8g-9DRKawx7pEtB03C_f_cJU8Xk8ezq2J6d3l9djItPOcqF3NWO4A5004LK6y0laicEcKwWoGp1dxaWVvJrJB2LozpQRuohXLalU4auUuO_vb2r7-9Y8qz1_Aeu_7kTPBKa11yxXrr8M_yiDhbRt9CXM9UVUsuKvkDm8Z0mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159994180</pqid></control><display><type>article</type><title>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Ching-Hong ; Lee, Yu-Lin ; Wang, Zih-Fong ; Liu, Rong-Chau ; Tsai, Jung-Hui ; Liu, Wen-Chau</creator><creatorcontrib>Chang, Ching-Hong ; Lee, Yu-Lin ; Wang, Zih-Fong ; Liu, Rong-Chau ; Tsai, Jung-Hui ; Liu, Wen-Chau</creatorcontrib><description>The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2018.2882802</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coatings ; Cones ; Gallium nitride ; Gallium nitrides ; GaN ; hybrid structure ; Hybrid structures ; Leakage current ; Light emitting diodes ; light extraction efficiency (LEE) ; Luminous efficacy ; microhole array ; Microholes ; microsphere (MSs) ; nanoparticle (NP) ; Nanoparticles ; Optical properties ; Organic light emitting diodes ; Passivation ; Passivity ; Performance evaluation ; Photonics ; Reflection ; sidewalls ; Silicon dioxide ; SiO ; Substrates</subject><ispartof>IEEE transactions on electron devices, 2019-01, Vol.66 (1), p.505-511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8037-3290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8573125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8573125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, Ching-Hong</creatorcontrib><creatorcontrib>Lee, Yu-Lin</creatorcontrib><creatorcontrib>Wang, Zih-Fong</creatorcontrib><creatorcontrib>Liu, Rong-Chau</creatorcontrib><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Liu, Wen-Chau</creatorcontrib><title>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications.</description><subject>Coatings</subject><subject>Cones</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>hybrid structure</subject><subject>Hybrid structures</subject><subject>Leakage current</subject><subject>Light emitting diodes</subject><subject>light extraction efficiency (LEE)</subject><subject>Luminous efficacy</subject><subject>microhole array</subject><subject>Microholes</subject><subject>microsphere (MSs)</subject><subject>nanoparticle (NP)</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Organic light emitting diodes</subject><subject>Passivation</subject><subject>Passivity</subject><subject>Performance evaluation</subject><subject>Photonics</subject><subject>Reflection</subject><subject>sidewalls</subject><subject>Silicon dioxide</subject><subject>SiO</subject><subject>Substrates</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj9tKAzEQhoMoWA_3gjcBb902h91ucumhHqAeQMXLMk0mNrK7qUms9E18DJ_BJ3NRr34-_m9mGEIOOBtyzvTocXI-FIyroVBKKCY2yIBXVV3ocTneJAPWV4WWSm6TnZReexyXpRiQz3uMLsQWOoP0ul3GsMIWu0yDo5dwW5xCQkun_mWRi0nrc_bdCz33wWKizz4vKNAbb2JYhAbpSYywPqZl9f1FH7zFD2iadEyhs7324O8EvYUuLCFmbxoc_Q6m5QIj0ntIya8g-9DRKawx7pEtB03C_f_cJU8Xk8ezq2J6d3l9djItPOcqF3NWO4A5004LK6y0laicEcKwWoGp1dxaWVvJrJB2LozpQRuohXLalU4auUuO_vb2r7-9Y8qz1_Aeu_7kTPBKa11yxXrr8M_yiDhbRt9CXM9UVUsuKvkDm8Z0mA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Chang, Ching-Hong</creator><creator>Lee, Yu-Lin</creator><creator>Wang, Zih-Fong</creator><creator>Liu, Rong-Chau</creator><creator>Tsai, Jung-Hui</creator><creator>Liu, Wen-Chau</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8037-3290</orcidid></search><sort><creationdate>201901</creationdate><title>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</title><author>Chang, Ching-Hong ; Lee, Yu-Lin ; Wang, Zih-Fong ; Liu, Rong-Chau ; Tsai, Jung-Hui ; Liu, Wen-Chau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-b07faab09f92d2d3d525fc22c078ac78bdd37d30d23db2cc37d9ca728f9f4f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coatings</topic><topic>Cones</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>hybrid structure</topic><topic>Hybrid structures</topic><topic>Leakage current</topic><topic>Light emitting diodes</topic><topic>light extraction efficiency (LEE)</topic><topic>Luminous efficacy</topic><topic>microhole array</topic><topic>Microholes</topic><topic>microsphere (MSs)</topic><topic>nanoparticle (NP)</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Organic light emitting diodes</topic><topic>Passivation</topic><topic>Passivity</topic><topic>Performance evaluation</topic><topic>Photonics</topic><topic>Reflection</topic><topic>sidewalls</topic><topic>Silicon dioxide</topic><topic>SiO</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ching-Hong</creatorcontrib><creatorcontrib>Lee, Yu-Lin</creatorcontrib><creatorcontrib>Wang, Zih-Fong</creatorcontrib><creatorcontrib>Liu, Rong-Chau</creatorcontrib><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Liu, Wen-Chau</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Ching-Hong</au><au>Lee, Yu-Lin</au><au>Wang, Zih-Fong</au><au>Liu, Rong-Chau</au><au>Tsai, Jung-Hui</au><au>Liu, Wen-Chau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2019-01</date><risdate>2019</risdate><volume>66</volume><issue>1</issue><spage>505</spage><epage>511</epage><pages>505-511</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2018.2882802</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8037-3290</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2019-01, Vol.66 (1), p.505-511
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_8573125
source IEEE Electronic Library (IEL)
subjects Coatings
Cones
Gallium nitride
Gallium nitrides
GaN
hybrid structure
Hybrid structures
Leakage current
Light emitting diodes
light extraction efficiency (LEE)
Luminous efficacy
microhole array
Microholes
microsphere (MSs)
nanoparticle (NP)
Nanoparticles
Optical properties
Organic light emitting diodes
Passivation
Passivity
Performance evaluation
Photonics
Reflection
sidewalls
Silicon dioxide
SiO
Substrates
title Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Improvement%20of%20GaN-Based%20Light-Emitting%20Diodes%20With%20a%20Microhole%20Array,%2045%C2%B0%20Sidewalls,%20and%20a%20SiO2%20Nanoparticle/Microsphere%20Passivation%20Layer&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chang,%20Ching-Hong&rft.date=2019-01&rft.volume=66&rft.issue=1&rft.spage=505&rft.epage=511&rft.pages=505-511&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2018.2882802&rft_dat=%3Cproquest_RIE%3E2159994180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159994180&rft_id=info:pmid/&rft_ieee_id=8573125&rfr_iscdi=true