Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer
The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkabl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2019-01, Vol.66 (1), p.505-511 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 511 |
---|---|
container_issue | 1 |
container_start_page | 505 |
container_title | IEEE transactions on electron devices |
container_volume | 66 |
creator | Chang, Ching-Hong Lee, Yu-Lin Wang, Zih-Fong Liu, Rong-Chau Tsai, Jung-Hui Liu, Wen-Chau |
description | The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications. |
doi_str_mv | 10.1109/TED.2018.2882802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8573125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8573125</ieee_id><sourcerecordid>2159994180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-b07faab09f92d2d3d525fc22c078ac78bdd37d30d23db2cc37d9ca728f9f4f3c3</originalsourceid><addsrcrecordid>eNotj9tKAzEQhoMoWA_3gjcBb902h91ucumhHqAeQMXLMk0mNrK7qUms9E18DJ_BJ3NRr34-_m9mGEIOOBtyzvTocXI-FIyroVBKKCY2yIBXVV3ocTneJAPWV4WWSm6TnZReexyXpRiQz3uMLsQWOoP0ul3GsMIWu0yDo5dwW5xCQkun_mWRi0nrc_bdCz33wWKizz4vKNAbb2JYhAbpSYywPqZl9f1FH7zFD2iadEyhs7324O8EvYUuLCFmbxoc_Q6m5QIj0ntIya8g-9DRKawx7pEtB03C_f_cJU8Xk8ezq2J6d3l9djItPOcqF3NWO4A5004LK6y0laicEcKwWoGp1dxaWVvJrJB2LozpQRuohXLalU4auUuO_vb2r7-9Y8qz1_Aeu_7kTPBKa11yxXrr8M_yiDhbRt9CXM9UVUsuKvkDm8Z0mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159994180</pqid></control><display><type>article</type><title>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Ching-Hong ; Lee, Yu-Lin ; Wang, Zih-Fong ; Liu, Rong-Chau ; Tsai, Jung-Hui ; Liu, Wen-Chau</creator><creatorcontrib>Chang, Ching-Hong ; Lee, Yu-Lin ; Wang, Zih-Fong ; Liu, Rong-Chau ; Tsai, Jung-Hui ; Liu, Wen-Chau</creatorcontrib><description>The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2018.2882802</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coatings ; Cones ; Gallium nitride ; Gallium nitrides ; GaN ; hybrid structure ; Hybrid structures ; Leakage current ; Light emitting diodes ; light extraction efficiency (LEE) ; Luminous efficacy ; microhole array ; Microholes ; microsphere (MSs) ; nanoparticle (NP) ; Nanoparticles ; Optical properties ; Organic light emitting diodes ; Passivation ; Passivity ; Performance evaluation ; Photonics ; Reflection ; sidewalls ; Silicon dioxide ; SiO ; Substrates</subject><ispartof>IEEE transactions on electron devices, 2019-01, Vol.66 (1), p.505-511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8037-3290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8573125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8573125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, Ching-Hong</creatorcontrib><creatorcontrib>Lee, Yu-Lin</creatorcontrib><creatorcontrib>Wang, Zih-Fong</creatorcontrib><creatorcontrib>Liu, Rong-Chau</creatorcontrib><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Liu, Wen-Chau</creatorcontrib><title>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications.</description><subject>Coatings</subject><subject>Cones</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>hybrid structure</subject><subject>Hybrid structures</subject><subject>Leakage current</subject><subject>Light emitting diodes</subject><subject>light extraction efficiency (LEE)</subject><subject>Luminous efficacy</subject><subject>microhole array</subject><subject>Microholes</subject><subject>microsphere (MSs)</subject><subject>nanoparticle (NP)</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Organic light emitting diodes</subject><subject>Passivation</subject><subject>Passivity</subject><subject>Performance evaluation</subject><subject>Photonics</subject><subject>Reflection</subject><subject>sidewalls</subject><subject>Silicon dioxide</subject><subject>SiO</subject><subject>Substrates</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj9tKAzEQhoMoWA_3gjcBb902h91ucumhHqAeQMXLMk0mNrK7qUms9E18DJ_BJ3NRr34-_m9mGEIOOBtyzvTocXI-FIyroVBKKCY2yIBXVV3ocTneJAPWV4WWSm6TnZReexyXpRiQz3uMLsQWOoP0ul3GsMIWu0yDo5dwW5xCQkun_mWRi0nrc_bdCz33wWKizz4vKNAbb2JYhAbpSYywPqZl9f1FH7zFD2iadEyhs7324O8EvYUuLCFmbxoc_Q6m5QIj0ntIya8g-9DRKawx7pEtB03C_f_cJU8Xk8ezq2J6d3l9djItPOcqF3NWO4A5004LK6y0laicEcKwWoGp1dxaWVvJrJB2LozpQRuohXLalU4auUuO_vb2r7-9Y8qz1_Aeu_7kTPBKa11yxXrr8M_yiDhbRt9CXM9UVUsuKvkDm8Z0mA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Chang, Ching-Hong</creator><creator>Lee, Yu-Lin</creator><creator>Wang, Zih-Fong</creator><creator>Liu, Rong-Chau</creator><creator>Tsai, Jung-Hui</creator><creator>Liu, Wen-Chau</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8037-3290</orcidid></search><sort><creationdate>201901</creationdate><title>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</title><author>Chang, Ching-Hong ; Lee, Yu-Lin ; Wang, Zih-Fong ; Liu, Rong-Chau ; Tsai, Jung-Hui ; Liu, Wen-Chau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-b07faab09f92d2d3d525fc22c078ac78bdd37d30d23db2cc37d9ca728f9f4f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coatings</topic><topic>Cones</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>hybrid structure</topic><topic>Hybrid structures</topic><topic>Leakage current</topic><topic>Light emitting diodes</topic><topic>light extraction efficiency (LEE)</topic><topic>Luminous efficacy</topic><topic>microhole array</topic><topic>Microholes</topic><topic>microsphere (MSs)</topic><topic>nanoparticle (NP)</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Organic light emitting diodes</topic><topic>Passivation</topic><topic>Passivity</topic><topic>Performance evaluation</topic><topic>Photonics</topic><topic>Reflection</topic><topic>sidewalls</topic><topic>Silicon dioxide</topic><topic>SiO</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ching-Hong</creatorcontrib><creatorcontrib>Lee, Yu-Lin</creatorcontrib><creatorcontrib>Wang, Zih-Fong</creatorcontrib><creatorcontrib>Liu, Rong-Chau</creatorcontrib><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Liu, Wen-Chau</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Ching-Hong</au><au>Lee, Yu-Lin</au><au>Wang, Zih-Fong</au><au>Liu, Rong-Chau</au><au>Tsai, Jung-Hui</au><au>Liu, Wen-Chau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2019-01</date><risdate>2019</risdate><volume>66</volume><issue>1</issue><spage>505</spage><epage>511</epage><pages>505-511</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The characteristics of GaN-based light-emitting diodes (LEDs) with a hybrid structure incorporating a microhole array, 45 sidewalls, and an appropriate SiO 2 nanoparticle (NP)/microsphere (MSs) passivation layer are studied and reported. The use of a SiO 2 NP/MSs passivation layer causes a remarkable reduction in reverse-biased leakage current. The employment of this hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. In addition, a lower content of SiO 2 NP in the mixed SiO 2 NP/MSs solution leads to enhanced optical behavior due to the improved transmittance. Experimentally, as compared with a conventional LED (Device A), the studied Device E shows 50.6%, 50.9%, 48.4%, and 49.9% enhancements in light output power, luminous flux, luminous efficacy, and wall-plug efficiency, respectively. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection and Fresnel reflection effects. Therefore, the studied hybrid structure provides a promise for high-performance GaN-based LED applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2018.2882802</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8037-3290</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2019-01, Vol.66 (1), p.505-511 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_8573125 |
source | IEEE Electronic Library (IEL) |
subjects | Coatings Cones Gallium nitride Gallium nitrides GaN hybrid structure Hybrid structures Leakage current Light emitting diodes light extraction efficiency (LEE) Luminous efficacy microhole array Microholes microsphere (MSs) nanoparticle (NP) Nanoparticles Optical properties Organic light emitting diodes Passivation Passivity Performance evaluation Photonics Reflection sidewalls Silicon dioxide SiO Substrates |
title | Performance Improvement of GaN-Based Light-Emitting Diodes With a Microhole Array, 45° Sidewalls, and a SiO2 Nanoparticle/Microsphere Passivation Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Improvement%20of%20GaN-Based%20Light-Emitting%20Diodes%20With%20a%20Microhole%20Array,%2045%C2%B0%20Sidewalls,%20and%20a%20SiO2%20Nanoparticle/Microsphere%20Passivation%20Layer&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chang,%20Ching-Hong&rft.date=2019-01&rft.volume=66&rft.issue=1&rft.spage=505&rft.epage=511&rft.pages=505-511&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2018.2882802&rft_dat=%3Cproquest_RIE%3E2159994180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159994180&rft_id=info:pmid/&rft_ieee_id=8573125&rfr_iscdi=true |