Fast H.264 to HEVC Transcoding: A Deep Learning Method

With the development of video coding technology, high-efficiency video coding (HEVC) has become a promising alternative, compared with the previous coding standards, for example, H.264. In general, H.264 to HEVC transcoding can be accomplished by fully H.264 decoding and fully HEVC encoding, which s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2019-07, Vol.21 (7), p.1633-1645
Hauptverfasser: Xu, Jingyao, Xu, Mai, Wei, Yanan, Wang, Zulin, Guan, Zhenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1645
container_issue 7
container_start_page 1633
container_title IEEE transactions on multimedia
container_volume 21
creator Xu, Jingyao
Xu, Mai
Wei, Yanan
Wang, Zulin
Guan, Zhenyu
description With the development of video coding technology, high-efficiency video coding (HEVC) has become a promising alternative, compared with the previous coding standards, for example, H.264. In general, H.264 to HEVC transcoding can be accomplished by fully H.264 decoding and fully HEVC encoding, which suffers from considerable time consumption on the brute-force search of the HEVC coding tree unit (CTU) partition for rate-distortion optimization (RDO). In this paper, we propose a deep learning method to predict the HEVC CTU partition, instead of the brute-force RDO search, for H.264 to HEVC transcoding. First, we build a large-scale H.264 to HEVC transcoding database. Second, we investigate the correlation between the HEVC CTU partition and H.264 features, and analyze both temporal and spatial-temporal similarities of the CTU partition across video frames. Third, we propose a deep learning architecture of a hierarchical long short-term memory (H-LSTM) network to predict the CTU partition of HEVC. Then, the brute-force RDO search of the CTU partition is replaced by the H-LSTM prediction such that the computational time can be significantly reduced for fast H.264 to HEVC transcoding. Finally, the experimental results verify that the proposed H-LSTM method can achieve a better tradeoff between coding efficiency and complexity, compared to the state-of-the-art H.264 to HEVC transcoding methods.
doi_str_mv 10.1109/TMM.2018.2885921
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8570845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8570845</ieee_id><sourcerecordid>2247925633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7a853c42e8767431bc41ebb5d8c4879805e903fdab5c02bdda9ad3c39501bf053</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA866Tr03irdTWCl28rF5DNslqi-7WZHvw35vS4mmGl-edgQehWwIlIaAfmrouKRBVUqWEpuQMTYjmpACQ8jzvgkKRY7hEVyltAQgXICeoWto04lVJK47HAa8W73PcRNsnN_hN__GIZ_gphB1eBxv7HOA6jJ-Dv0YXnf1K4eY0p-htuWjmq2L9-vwyn60Lx4QcC2mVYI7ToGQlOSOt4yS0rfDKcSW1AhE0sM7bVjigrfdWW88c0wJI24FgU3R_vLuLw88-pNFsh33s80tDKZeaioqxTMGRcnFIKYbO7OLm28ZfQ8Ac7JhsxxzsmJOdXLk7VjYhhH9cCQmKC_YHhPtczw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247925633</pqid></control><display><type>article</type><title>Fast H.264 to HEVC Transcoding: A Deep Learning Method</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Xu, Jingyao ; Xu, Mai ; Wei, Yanan ; Wang, Zulin ; Guan, Zhenyu</creator><creatorcontrib>Xu, Jingyao ; Xu, Mai ; Wei, Yanan ; Wang, Zulin ; Guan, Zhenyu</creatorcontrib><description>With the development of video coding technology, high-efficiency video coding (HEVC) has become a promising alternative, compared with the previous coding standards, for example, H.264. In general, H.264 to HEVC transcoding can be accomplished by fully H.264 decoding and fully HEVC encoding, which suffers from considerable time consumption on the brute-force search of the HEVC coding tree unit (CTU) partition for rate-distortion optimization (RDO). In this paper, we propose a deep learning method to predict the HEVC CTU partition, instead of the brute-force RDO search, for H.264 to HEVC transcoding. First, we build a large-scale H.264 to HEVC transcoding database. Second, we investigate the correlation between the HEVC CTU partition and H.264 features, and analyze both temporal and spatial-temporal similarities of the CTU partition across video frames. Third, we propose a deep learning architecture of a hierarchical long short-term memory (H-LSTM) network to predict the CTU partition of HEVC. Then, the brute-force RDO search of the CTU partition is replaced by the H-LSTM prediction such that the computational time can be significantly reduced for fast H.264 to HEVC transcoding. Finally, the experimental results verify that the proposed H-LSTM method can achieve a better tradeoff between coding efficiency and complexity, compared to the state-of-the-art H.264 to HEVC transcoding methods.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2018.2885921</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coding ; Coding standards ; Computing time ; Decoding ; Deep learning ; Feature extraction ; H.264 ; HEVC ; LSTM ; Machine learning ; Optimization ; Partitions ; Searching ; State of the art ; Streaming media ; Teaching methods ; Transcoding ; Video coding ; Video compression</subject><ispartof>IEEE transactions on multimedia, 2019-07, Vol.21 (7), p.1633-1645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7a853c42e8767431bc41ebb5d8c4879805e903fdab5c02bdda9ad3c39501bf053</citedby><cites>FETCH-LOGICAL-c357t-7a853c42e8767431bc41ebb5d8c4879805e903fdab5c02bdda9ad3c39501bf053</cites><orcidid>0000-0002-0277-3301 ; 0000-0002-3959-338X ; 0000-0002-0305-8625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8570845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8570845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Jingyao</creatorcontrib><creatorcontrib>Xu, Mai</creatorcontrib><creatorcontrib>Wei, Yanan</creatorcontrib><creatorcontrib>Wang, Zulin</creatorcontrib><creatorcontrib>Guan, Zhenyu</creatorcontrib><title>Fast H.264 to HEVC Transcoding: A Deep Learning Method</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>With the development of video coding technology, high-efficiency video coding (HEVC) has become a promising alternative, compared with the previous coding standards, for example, H.264. In general, H.264 to HEVC transcoding can be accomplished by fully H.264 decoding and fully HEVC encoding, which suffers from considerable time consumption on the brute-force search of the HEVC coding tree unit (CTU) partition for rate-distortion optimization (RDO). In this paper, we propose a deep learning method to predict the HEVC CTU partition, instead of the brute-force RDO search, for H.264 to HEVC transcoding. First, we build a large-scale H.264 to HEVC transcoding database. Second, we investigate the correlation between the HEVC CTU partition and H.264 features, and analyze both temporal and spatial-temporal similarities of the CTU partition across video frames. Third, we propose a deep learning architecture of a hierarchical long short-term memory (H-LSTM) network to predict the CTU partition of HEVC. Then, the brute-force RDO search of the CTU partition is replaced by the H-LSTM prediction such that the computational time can be significantly reduced for fast H.264 to HEVC transcoding. Finally, the experimental results verify that the proposed H-LSTM method can achieve a better tradeoff between coding efficiency and complexity, compared to the state-of-the-art H.264 to HEVC transcoding methods.</description><subject>Coding</subject><subject>Coding standards</subject><subject>Computing time</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>H.264</subject><subject>HEVC</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Partitions</subject><subject>Searching</subject><subject>State of the art</subject><subject>Streaming media</subject><subject>Teaching methods</subject><subject>Transcoding</subject><subject>Video coding</subject><subject>Video compression</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA866Tr03irdTWCl28rF5DNslqi-7WZHvw35vS4mmGl-edgQehWwIlIaAfmrouKRBVUqWEpuQMTYjmpACQ8jzvgkKRY7hEVyltAQgXICeoWto04lVJK47HAa8W73PcRNsnN_hN__GIZ_gphB1eBxv7HOA6jJ-Dv0YXnf1K4eY0p-htuWjmq2L9-vwyn60Lx4QcC2mVYI7ToGQlOSOt4yS0rfDKcSW1AhE0sM7bVjigrfdWW88c0wJI24FgU3R_vLuLw88-pNFsh33s80tDKZeaioqxTMGRcnFIKYbO7OLm28ZfQ8Ac7JhsxxzsmJOdXLk7VjYhhH9cCQmKC_YHhPtczw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xu, Jingyao</creator><creator>Xu, Mai</creator><creator>Wei, Yanan</creator><creator>Wang, Zulin</creator><creator>Guan, Zhenyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0277-3301</orcidid><orcidid>https://orcid.org/0000-0002-3959-338X</orcidid><orcidid>https://orcid.org/0000-0002-0305-8625</orcidid></search><sort><creationdate>20190701</creationdate><title>Fast H.264 to HEVC Transcoding: A Deep Learning Method</title><author>Xu, Jingyao ; Xu, Mai ; Wei, Yanan ; Wang, Zulin ; Guan, Zhenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7a853c42e8767431bc41ebb5d8c4879805e903fdab5c02bdda9ad3c39501bf053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coding</topic><topic>Coding standards</topic><topic>Computing time</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>H.264</topic><topic>HEVC</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Partitions</topic><topic>Searching</topic><topic>State of the art</topic><topic>Streaming media</topic><topic>Teaching methods</topic><topic>Transcoding</topic><topic>Video coding</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jingyao</creatorcontrib><creatorcontrib>Xu, Mai</creatorcontrib><creatorcontrib>Wei, Yanan</creatorcontrib><creatorcontrib>Wang, Zulin</creatorcontrib><creatorcontrib>Guan, Zhenyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Jingyao</au><au>Xu, Mai</au><au>Wei, Yanan</au><au>Wang, Zulin</au><au>Guan, Zhenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast H.264 to HEVC Transcoding: A Deep Learning Method</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>21</volume><issue>7</issue><spage>1633</spage><epage>1645</epage><pages>1633-1645</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>With the development of video coding technology, high-efficiency video coding (HEVC) has become a promising alternative, compared with the previous coding standards, for example, H.264. In general, H.264 to HEVC transcoding can be accomplished by fully H.264 decoding and fully HEVC encoding, which suffers from considerable time consumption on the brute-force search of the HEVC coding tree unit (CTU) partition for rate-distortion optimization (RDO). In this paper, we propose a deep learning method to predict the HEVC CTU partition, instead of the brute-force RDO search, for H.264 to HEVC transcoding. First, we build a large-scale H.264 to HEVC transcoding database. Second, we investigate the correlation between the HEVC CTU partition and H.264 features, and analyze both temporal and spatial-temporal similarities of the CTU partition across video frames. Third, we propose a deep learning architecture of a hierarchical long short-term memory (H-LSTM) network to predict the CTU partition of HEVC. Then, the brute-force RDO search of the CTU partition is replaced by the H-LSTM prediction such that the computational time can be significantly reduced for fast H.264 to HEVC transcoding. Finally, the experimental results verify that the proposed H-LSTM method can achieve a better tradeoff between coding efficiency and complexity, compared to the state-of-the-art H.264 to HEVC transcoding methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2018.2885921</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0277-3301</orcidid><orcidid>https://orcid.org/0000-0002-3959-338X</orcidid><orcidid>https://orcid.org/0000-0002-0305-8625</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2019-07, Vol.21 (7), p.1633-1645
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_8570845
source IEEE/IET Electronic Library (IEL)
subjects Coding
Coding standards
Computing time
Decoding
Deep learning
Feature extraction
H.264
HEVC
LSTM
Machine learning
Optimization
Partitions
Searching
State of the art
Streaming media
Teaching methods
Transcoding
Video coding
Video compression
title Fast H.264 to HEVC Transcoding: A Deep Learning Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20H.264%20to%20HEVC%20Transcoding:%20A%20Deep%20Learning%20Method&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xu,%20Jingyao&rft.date=2019-07-01&rft.volume=21&rft.issue=7&rft.spage=1633&rft.epage=1645&rft.pages=1633-1645&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2018.2885921&rft_dat=%3Cproquest_RIE%3E2247925633%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247925633&rft_id=info:pmid/&rft_ieee_id=8570845&rfr_iscdi=true