Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts

Textual emotion detection is a challenge in computational linguistics and affective computing study as it involves the discovery of all associated emotions expressed within a given piece of text. It becomes an even more difficult problem when applied to conversation transcripts, as we need to model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2021-07, Vol.12 (3), p.682-691
Hauptverfasser: Phan, Duc-Anh, Matsumoto, Yuji, Shindo, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 3
container_start_page 682
container_title IEEE transactions on affective computing
container_volume 12
creator Phan, Duc-Anh
Matsumoto, Yuji
Shindo, Hiroyuki
description Textual emotion detection is a challenge in computational linguistics and affective computing study as it involves the discovery of all associated emotions expressed within a given piece of text. It becomes an even more difficult problem when applied to conversation transcripts, as we need to model the spoken utterances between speakers, keeping in mind the context of the entire conversation. In this paper, we propose a semisupervised multilabel method of predicting emotions from conversation transcripts. The corpus contains conversational quotes extracted from movies. A small number of them are annotated, while the rest are used for unsupervised training. We use the word2vec word-embedding method to build an emotion lexicon from the corpus and to embed the utterances into vector representations. A deep-learning autoencoder is then used to discover the underlying structure of the unsupervised data. We fine-tune the learned model on labeled training data, and measure its performance on a test set. The experiment result suggests that the method is effective and is only slightly behind human annotators.
doi_str_mv 10.1109/TAFFC.2018.2885304
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8570758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8570758</ieee_id><sourcerecordid>2568777277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-24b5a5b524cb87d71739f810b7e2e291f648e260f77192c1749f7b275adf7e23</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNT-A3oJeE7dj2xmcyyxUaHiwXheks0spLTZuJsU_O9NPxDnMm_gvXnwI-Se0SVjNHsqV0WRLzllasmVkoImV2TGsiSLJymv_-lbsghhS6cRQqQcZuRrNQ4OO-Ma9JF1PvrEfRvGHv2hDdhE7-NuaPsdRuu9G1rXRc84oDkpZ6PcdQf0oTrdpa-6YHzbD-GO3NhqF3Bx2XNSFusyf403Hy9v-WoTG5GyIeZJLStZS56YWkEDDERmFaM1IEeeMZsmCnlKLQDLuGGQZBZqDrJq7GQRc_J4ftt79z1iGPTWjb6bGjWXqQIADjC5-NllvAvBo9W9b_eV_9GM6iNAfQKojwD1BeAUejiHWkT8CygJFKQSv5OTbKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568777277</pqid></control><display><type>article</type><title>Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts</title><source>IEEE Electronic Library (IEL)</source><creator>Phan, Duc-Anh ; Matsumoto, Yuji ; Shindo, Hiroyuki</creator><creatorcontrib>Phan, Duc-Anh ; Matsumoto, Yuji ; Shindo, Hiroyuki</creatorcontrib><description>Textual emotion detection is a challenge in computational linguistics and affective computing study as it involves the discovery of all associated emotions expressed within a given piece of text. It becomes an even more difficult problem when applied to conversation transcripts, as we need to model the spoken utterances between speakers, keeping in mind the context of the entire conversation. In this paper, we propose a semisupervised multilabel method of predicting emotions from conversation transcripts. The corpus contains conversational quotes extracted from movies. A small number of them are annotated, while the rest are used for unsupervised training. We use the word2vec word-embedding method to build an emotion lexicon from the corpus and to embed the utterances into vector representations. A deep-learning autoencoder is then used to discover the underlying structure of the unsupervised data. We fine-tune the learned model on labeled training data, and measure its performance on a test set. The experiment result suggests that the method is effective and is only slightly behind human annotators.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2018.2885304</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affective computing ; autoencoder ; Context modeling ; Correlation ; Data models ; Emotion recognition ; Emotions ; Linguistics ; Motion pictures ; multilabel ; Neural networks ; semisupervised learning ; Social network services ; Training ; Training data ; word2vec</subject><ispartof>IEEE transactions on affective computing, 2021-07, Vol.12 (3), p.682-691</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-24b5a5b524cb87d71739f810b7e2e291f648e260f77192c1749f7b275adf7e23</citedby><cites>FETCH-LOGICAL-c361t-24b5a5b524cb87d71739f810b7e2e291f648e260f77192c1749f7b275adf7e23</cites><orcidid>0000-0001-9691-1666 ; 0000-0003-4946-9574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8570758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8570758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phan, Duc-Anh</creatorcontrib><creatorcontrib>Matsumoto, Yuji</creatorcontrib><creatorcontrib>Shindo, Hiroyuki</creatorcontrib><title>Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Textual emotion detection is a challenge in computational linguistics and affective computing study as it involves the discovery of all associated emotions expressed within a given piece of text. It becomes an even more difficult problem when applied to conversation transcripts, as we need to model the spoken utterances between speakers, keeping in mind the context of the entire conversation. In this paper, we propose a semisupervised multilabel method of predicting emotions from conversation transcripts. The corpus contains conversational quotes extracted from movies. A small number of them are annotated, while the rest are used for unsupervised training. We use the word2vec word-embedding method to build an emotion lexicon from the corpus and to embed the utterances into vector representations. A deep-learning autoencoder is then used to discover the underlying structure of the unsupervised data. We fine-tune the learned model on labeled training data, and measure its performance on a test set. The experiment result suggests that the method is effective and is only slightly behind human annotators.</description><subject>Affective computing</subject><subject>autoencoder</subject><subject>Context modeling</subject><subject>Correlation</subject><subject>Data models</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Linguistics</subject><subject>Motion pictures</subject><subject>multilabel</subject><subject>Neural networks</subject><subject>semisupervised learning</subject><subject>Social network services</subject><subject>Training</subject><subject>Training data</subject><subject>word2vec</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsNT-A3oJeE7dj2xmcyyxUaHiwXheks0spLTZuJsU_O9NPxDnMm_gvXnwI-Se0SVjNHsqV0WRLzllasmVkoImV2TGsiSLJymv_-lbsghhS6cRQqQcZuRrNQ4OO-Ma9JF1PvrEfRvGHv2hDdhE7-NuaPsdRuu9G1rXRc84oDkpZ6PcdQf0oTrdpa-6YHzbD-GO3NhqF3Bx2XNSFusyf403Hy9v-WoTG5GyIeZJLStZS56YWkEDDERmFaM1IEeeMZsmCnlKLQDLuGGQZBZqDrJq7GQRc_J4ftt79z1iGPTWjb6bGjWXqQIADjC5-NllvAvBo9W9b_eV_9GM6iNAfQKojwD1BeAUejiHWkT8CygJFKQSv5OTbKE</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Phan, Duc-Anh</creator><creator>Matsumoto, Yuji</creator><creator>Shindo, Hiroyuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9691-1666</orcidid><orcidid>https://orcid.org/0000-0003-4946-9574</orcidid></search><sort><creationdate>20210701</creationdate><title>Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts</title><author>Phan, Duc-Anh ; Matsumoto, Yuji ; Shindo, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-24b5a5b524cb87d71739f810b7e2e291f648e260f77192c1749f7b275adf7e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affective computing</topic><topic>autoencoder</topic><topic>Context modeling</topic><topic>Correlation</topic><topic>Data models</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Linguistics</topic><topic>Motion pictures</topic><topic>multilabel</topic><topic>Neural networks</topic><topic>semisupervised learning</topic><topic>Social network services</topic><topic>Training</topic><topic>Training data</topic><topic>word2vec</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Duc-Anh</creatorcontrib><creatorcontrib>Matsumoto, Yuji</creatorcontrib><creatorcontrib>Shindo, Hiroyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phan, Duc-Anh</au><au>Matsumoto, Yuji</au><au>Shindo, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>682</spage><epage>691</epage><pages>682-691</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Textual emotion detection is a challenge in computational linguistics and affective computing study as it involves the discovery of all associated emotions expressed within a given piece of text. It becomes an even more difficult problem when applied to conversation transcripts, as we need to model the spoken utterances between speakers, keeping in mind the context of the entire conversation. In this paper, we propose a semisupervised multilabel method of predicting emotions from conversation transcripts. The corpus contains conversational quotes extracted from movies. A small number of them are annotated, while the rest are used for unsupervised training. We use the word2vec word-embedding method to build an emotion lexicon from the corpus and to embed the utterances into vector representations. A deep-learning autoencoder is then used to discover the underlying structure of the unsupervised data. We fine-tune the learned model on labeled training data, and measure its performance on a test set. The experiment result suggests that the method is effective and is only slightly behind human annotators.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2018.2885304</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9691-1666</orcidid><orcidid>https://orcid.org/0000-0003-4946-9574</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2021-07, Vol.12 (3), p.682-691
issn 1949-3045
1949-3045
language eng
recordid cdi_ieee_primary_8570758
source IEEE Electronic Library (IEL)
subjects Affective computing
autoencoder
Context modeling
Correlation
Data models
Emotion recognition
Emotions
Linguistics
Motion pictures
multilabel
Neural networks
semisupervised learning
Social network services
Training
Training data
word2vec
title Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoencoder%20for%20Semisupervised%20Multiple%20Emotion%20Detection%20of%20Conversation%20Transcripts&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Phan,%20Duc-Anh&rft.date=2021-07-01&rft.volume=12&rft.issue=3&rft.spage=682&rft.epage=691&rft.pages=682-691&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2018.2885304&rft_dat=%3Cproquest_RIE%3E2568777277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568777277&rft_id=info:pmid/&rft_ieee_id=8570758&rfr_iscdi=true