A neural optimization framework for zoom lens camera calibration
Camera systems with zoom lenses are inherently more useful than those with passive lenses due to their flexibility and controllability. However, calibration techniques for active-cameras, still, lag behind those developed for calibration of passive-lens cameras. In this paper, we present a neural fr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 vol.1 |
---|---|
container_issue | |
container_start_page | 403 |
container_title | |
container_volume | 1 |
creator | Ahmed, M.T. Farag, A.A. |
description | Camera systems with zoom lenses are inherently more useful than those with passive lenses due to their flexibility and controllability. However, calibration techniques for active-cameras, still, lag behind those developed for calibration of passive-lens cameras. In this paper, we present a neural framework for zoom-lens camera calibration based on our proposed neurocalibration approach, which maps the classical problem of geometric camera calibration into a learning problem of a multi-layered feedforward neural network (MLFN). After discussing the features and advantages of the neurocalibration network, we present how this neural framework can capture the complex variations in the camera model parameters, both intrinsic and extrinsic, while minimizing the calibration error over all the calibration data across continuous ranges in the lens control space. The framework consists of a number of MLFNs learning concurrently, independently and cooperatively, the perspective projection transformation of the camera over its optical setting ranges. The calibration results of this technique applied to Hitachi CCD cameras with H10x11E Fujinon active lenses are reported. |
doi_str_mv | 10.1109/CVPR.2000.855847 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_855847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>855847</ieee_id><sourcerecordid>27616713</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-9933240fe524f2c655d8d2323cae80fe851693b5afaec513e4cbb96f17f651b63</originalsourceid><addsrcrecordid>eNotkE1LxDAYhAMquKy9i6ecvLXmo0mam0vRVVhQRL2WtPsGom1Tky7i_nqD9TTwzMMcBqFLSgpKib6p359fCkYIKSohqlKdoEyriiipBZGS8VO0okTyXGqqz1EW40dySeq0UCt0u8EjHILpsZ9mN7ijmZ0fsQ1mgG8fPrH1AR-9H3APY8RdwsGk6F0b_tQLdGZNHyH7zzV6u797rR_y3dP2sd7scscIn3OtOWclsSBYaVknhdhXe8YZ7wxUCVeCSs1bYayBTlAOZde2WlqqrBS0lXyNrpfdKfivA8S5GVzsoO_NCP4QG6YklYryJF4togOAZgpuMOGnWb7hv2wlV5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27616713</pqid></control><display><type>conference_proceeding</type><title>A neural optimization framework for zoom lens camera calibration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahmed, M.T. ; Farag, A.A.</creator><creatorcontrib>Ahmed, M.T. ; Farag, A.A.</creatorcontrib><description>Camera systems with zoom lenses are inherently more useful than those with passive lenses due to their flexibility and controllability. However, calibration techniques for active-cameras, still, lag behind those developed for calibration of passive-lens cameras. In this paper, we present a neural framework for zoom-lens camera calibration based on our proposed neurocalibration approach, which maps the classical problem of geometric camera calibration into a learning problem of a multi-layered feedforward neural network (MLFN). After discussing the features and advantages of the neurocalibration network, we present how this neural framework can capture the complex variations in the camera model parameters, both intrinsic and extrinsic, while minimizing the calibration error over all the calibration data across continuous ranges in the lens control space. The framework consists of a number of MLFNs learning concurrently, independently and cooperatively, the perspective projection transformation of the camera over its optical setting ranges. The calibration results of this technique applied to Hitachi CCD cameras with H10x11E Fujinon active lenses are reported.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769506623</identifier><identifier>ISBN: 0769506623</identifier><identifier>DOI: 10.1109/CVPR.2000.855847</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; Charge coupled devices ; Charge-coupled image sensors ; Controllability ; Error correction ; Feedforward neural networks ; Lenses ; Multi-layer neural network ; Neural networks</subject><ispartof>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, Vol.1, p.403-409 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/855847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/855847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmed, M.T.</creatorcontrib><creatorcontrib>Farag, A.A.</creatorcontrib><title>A neural optimization framework for zoom lens camera calibration</title><title>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Camera systems with zoom lenses are inherently more useful than those with passive lenses due to their flexibility and controllability. However, calibration techniques for active-cameras, still, lag behind those developed for calibration of passive-lens cameras. In this paper, we present a neural framework for zoom-lens camera calibration based on our proposed neurocalibration approach, which maps the classical problem of geometric camera calibration into a learning problem of a multi-layered feedforward neural network (MLFN). After discussing the features and advantages of the neurocalibration network, we present how this neural framework can capture the complex variations in the camera model parameters, both intrinsic and extrinsic, while minimizing the calibration error over all the calibration data across continuous ranges in the lens control space. The framework consists of a number of MLFNs learning concurrently, independently and cooperatively, the perspective projection transformation of the camera over its optical setting ranges. The calibration results of this technique applied to Hitachi CCD cameras with H10x11E Fujinon active lenses are reported.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Charge coupled devices</subject><subject>Charge-coupled image sensors</subject><subject>Controllability</subject><subject>Error correction</subject><subject>Feedforward neural networks</subject><subject>Lenses</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><issn>1063-6919</issn><isbn>9780769506623</isbn><isbn>0769506623</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LxDAYhAMquKy9i6ecvLXmo0mam0vRVVhQRL2WtPsGom1Tky7i_nqD9TTwzMMcBqFLSgpKib6p359fCkYIKSohqlKdoEyriiipBZGS8VO0okTyXGqqz1EW40dySeq0UCt0u8EjHILpsZ9mN7ijmZ0fsQ1mgG8fPrH1AR-9H3APY8RdwsGk6F0b_tQLdGZNHyH7zzV6u797rR_y3dP2sd7scscIn3OtOWclsSBYaVknhdhXe8YZ7wxUCVeCSs1bYayBTlAOZde2WlqqrBS0lXyNrpfdKfivA8S5GVzsoO_NCP4QG6YklYryJF4togOAZgpuMOGnWb7hv2wlV5A</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Ahmed, M.T.</creator><creator>Farag, A.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>A neural optimization framework for zoom lens camera calibration</title><author>Ahmed, M.T. ; Farag, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-9933240fe524f2c655d8d2323cae80fe851693b5afaec513e4cbb96f17f651b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Charge coupled devices</topic><topic>Charge-coupled image sensors</topic><topic>Controllability</topic><topic>Error correction</topic><topic>Feedforward neural networks</topic><topic>Lenses</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, M.T.</creatorcontrib><creatorcontrib>Farag, A.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, M.T.</au><au>Farag, A.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A neural optimization framework for zoom lens camera calibration</atitle><btitle>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>403</spage><epage>409 vol.1</epage><pages>403-409 vol.1</pages><issn>1063-6919</issn><isbn>9780769506623</isbn><isbn>0769506623</isbn><abstract>Camera systems with zoom lenses are inherently more useful than those with passive lenses due to their flexibility and controllability. However, calibration techniques for active-cameras, still, lag behind those developed for calibration of passive-lens cameras. In this paper, we present a neural framework for zoom-lens camera calibration based on our proposed neurocalibration approach, which maps the classical problem of geometric camera calibration into a learning problem of a multi-layered feedforward neural network (MLFN). After discussing the features and advantages of the neurocalibration network, we present how this neural framework can capture the complex variations in the camera model parameters, both intrinsic and extrinsic, while minimizing the calibration error over all the calibration data across continuous ranges in the lens control space. The framework consists of a number of MLFNs learning concurrently, independently and cooperatively, the perspective projection transformation of the camera over its optical setting ranges. The calibration results of this technique applied to Hitachi CCD cameras with H10x11E Fujinon active lenses are reported.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2000.855847</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, Vol.1, p.403-409 vol.1 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_855847 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Calibration Cameras Charge coupled devices Charge-coupled image sensors Controllability Error correction Feedforward neural networks Lenses Multi-layer neural network Neural networks |
title | A neural optimization framework for zoom lens camera calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20neural%20optimization%20framework%20for%20zoom%20lens%20camera%20calibration&rft.btitle=Proceedings%20-%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Ahmed,%20M.T.&rft.date=2000&rft.volume=1&rft.spage=403&rft.epage=409%20vol.1&rft.pages=403-409%20vol.1&rft.issn=1063-6919&rft.isbn=9780769506623&rft.isbn_list=0769506623&rft_id=info:doi/10.1109/CVPR.2000.855847&rft_dat=%3Cproquest_6IE%3E27616713%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27616713&rft_id=info:pmid/&rft_ieee_id=855847&rfr_iscdi=true |