A probabilistic architecture for content-based image retrieval

The design of an effective architecture for content-based retrieval from visual libraries requires careful consideration of the interplay between feature selection, feature representation, and similarity metric. We present a solution where all the modules strive to optimize the same performance crit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vasconcelos, N., Lippman, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221 vol.1
container_issue
container_start_page 216
container_title
container_volume 1
creator Vasconcelos, N.
Lippman, A.
description The design of an effective architecture for content-based retrieval from visual libraries requires careful consideration of the interplay between feature selection, feature representation, and similarity metric. We present a solution where all the modules strive to optimize the same performance criteria: the probability of retrieval error. This solution consists of a Bayesian retrieval criteria (shown to generalize the most prevalent similarity metrics in current use) and an embedded mixture representation over a multiresolution feature space (shown to provide a good trade-off between retrieval accuracy, invariance, perceptual relevance of similarity, and complexity). The new representation extends standard models (histogram and Gaussian) by providing simultaneous support for high-dimensional features and multi-modal densities and performs well on color texture, and generic image databases.
doi_str_mv 10.1109/CVPR.2000.855822
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_855822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>855822</ieee_id><sourcerecordid>27656936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-743ea1c7f1d83d8d7bd9e4675126b7558cee08d2cff22ec4875d9030f34c76413</originalsourceid><addsrcrecordid>eNotkE1LxDAURQMqOIyzF1dduWt9SZqvjTAUHYUBRdRtSZNXjXTaMckI_nsL4-ou7uFyuIRcUqgoBXPTvD-_VAwAKi2EZuyErIzSoKQRICXjp2RBQfJSGmrOySqlr5mFuTNCLcjtutjHqbNdGELKwRU2us-Q0eVDxKKfYuGmMeOYy84m9EXY2Q8sIuYY8McOF-Sst0PC1X8uydv93WvzUG6fNo_Nels6JiCXquZoqVM99Zp77VXnDdZSCcpkp2ZthwjaM9f3jKGrtRLeAIee107JmvIluT7uzrLfB0y53YXkcBjsiNMhtUxJIQ2XM3h1BAMitvs4-8bf9vgM_wOhTVaj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27656936</pqid></control><display><type>conference_proceeding</type><title>A probabilistic architecture for content-based image retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vasconcelos, N. ; Lippman, A.</creator><creatorcontrib>Vasconcelos, N. ; Lippman, A.</creatorcontrib><description>The design of an effective architecture for content-based retrieval from visual libraries requires careful consideration of the interplay between feature selection, feature representation, and similarity metric. We present a solution where all the modules strive to optimize the same performance criteria: the probability of retrieval error. This solution consists of a Bayesian retrieval criteria (shown to generalize the most prevalent similarity metrics in current use) and an embedded mixture representation over a multiresolution feature space (shown to provide a good trade-off between retrieval accuracy, invariance, perceptual relevance of similarity, and complexity). The new representation extends standard models (histogram and Gaussian) by providing simultaneous support for high-dimensional features and multi-modal densities and performs well on color texture, and generic image databases.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769506623</identifier><identifier>ISBN: 0769506623</identifier><identifier>DOI: 10.1109/CVPR.2000.855822</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Content based retrieval ; Extraterrestrial measurements ; Focusing ; Histograms ; Image databases ; Image retrieval ; Information retrieval ; Libraries ; Spatial databases</subject><ispartof>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, Vol.1, p.216-221 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-743ea1c7f1d83d8d7bd9e4675126b7558cee08d2cff22ec4875d9030f34c76413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/855822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/855822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vasconcelos, N.</creatorcontrib><creatorcontrib>Lippman, A.</creatorcontrib><title>A probabilistic architecture for content-based image retrieval</title><title>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>The design of an effective architecture for content-based retrieval from visual libraries requires careful consideration of the interplay between feature selection, feature representation, and similarity metric. We present a solution where all the modules strive to optimize the same performance criteria: the probability of retrieval error. This solution consists of a Bayesian retrieval criteria (shown to generalize the most prevalent similarity metrics in current use) and an embedded mixture representation over a multiresolution feature space (shown to provide a good trade-off between retrieval accuracy, invariance, perceptual relevance of similarity, and complexity). The new representation extends standard models (histogram and Gaussian) by providing simultaneous support for high-dimensional features and multi-modal densities and performs well on color texture, and generic image databases.</description><subject>Bayesian methods</subject><subject>Content based retrieval</subject><subject>Extraterrestrial measurements</subject><subject>Focusing</subject><subject>Histograms</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Libraries</subject><subject>Spatial databases</subject><issn>1063-6919</issn><isbn>9780769506623</isbn><isbn>0769506623</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LxDAURQMqOIyzF1dduWt9SZqvjTAUHYUBRdRtSZNXjXTaMckI_nsL4-ou7uFyuIRcUqgoBXPTvD-_VAwAKi2EZuyErIzSoKQRICXjp2RBQfJSGmrOySqlr5mFuTNCLcjtutjHqbNdGELKwRU2us-Q0eVDxKKfYuGmMeOYy84m9EXY2Q8sIuYY8McOF-Sst0PC1X8uydv93WvzUG6fNo_Nels6JiCXquZoqVM99Zp77VXnDdZSCcpkp2ZthwjaM9f3jKGrtRLeAIee107JmvIluT7uzrLfB0y53YXkcBjsiNMhtUxJIQ2XM3h1BAMitvs4-8bf9vgM_wOhTVaj</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Vasconcelos, N.</creator><creator>Lippman, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>A probabilistic architecture for content-based image retrieval</title><author>Vasconcelos, N. ; Lippman, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-743ea1c7f1d83d8d7bd9e4675126b7558cee08d2cff22ec4875d9030f34c76413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bayesian methods</topic><topic>Content based retrieval</topic><topic>Extraterrestrial measurements</topic><topic>Focusing</topic><topic>Histograms</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Libraries</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Vasconcelos, N.</creatorcontrib><creatorcontrib>Lippman, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasconcelos, N.</au><au>Lippman, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A probabilistic architecture for content-based image retrieval</atitle><btitle>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>216</spage><epage>221 vol.1</epage><pages>216-221 vol.1</pages><issn>1063-6919</issn><isbn>9780769506623</isbn><isbn>0769506623</isbn><abstract>The design of an effective architecture for content-based retrieval from visual libraries requires careful consideration of the interplay between feature selection, feature representation, and similarity metric. We present a solution where all the modules strive to optimize the same performance criteria: the probability of retrieval error. This solution consists of a Bayesian retrieval criteria (shown to generalize the most prevalent similarity metrics in current use) and an embedded mixture representation over a multiresolution feature space (shown to provide a good trade-off between retrieval accuracy, invariance, perceptual relevance of similarity, and complexity). The new representation extends standard models (histogram and Gaussian) by providing simultaneous support for high-dimensional features and multi-modal densities and performs well on color texture, and generic image databases.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2000.855822</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, Vol.1, p.216-221 vol.1
issn 1063-6919
language eng
recordid cdi_ieee_primary_855822
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Content based retrieval
Extraterrestrial measurements
Focusing
Histograms
Image databases
Image retrieval
Information retrieval
Libraries
Spatial databases
title A probabilistic architecture for content-based image retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20probabilistic%20architecture%20for%20content-based%20image%20retrieval&rft.btitle=Proceedings%20-%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Vasconcelos,%20N.&rft.date=2000&rft.volume=1&rft.spage=216&rft.epage=221%20vol.1&rft.pages=216-221%20vol.1&rft.issn=1063-6919&rft.isbn=9780769506623&rft.isbn_list=0769506623&rft_id=info:doi/10.1109/CVPR.2000.855822&rft_dat=%3Cproquest_6IE%3E27656936%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27656936&rft_id=info:pmid/&rft_ieee_id=855822&rfr_iscdi=true