Recovering projection geometry: how a cheap camera can outperform an expensive stereo system
Recovering the projection geometry of an X-ray system or an augmented reality video see-through Head Mounted Display (HMD) are mathematically quite similar. Recent work in both medical imaging and augmented reality use external optical sensors in order to recover the motion of the imaging system. In...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 vol.1 |
---|---|
container_issue | |
container_start_page | 193 |
container_title | |
container_volume | 1 |
creator | Mischke, M.M. Navab, N. |
description | Recovering the projection geometry of an X-ray system or an augmented reality video see-through Head Mounted Display (HMD) are mathematically quite similar. Recent work in both medical imaging and augmented reality use external optical sensors in order to recover the motion of the imaging system. In this paper, we take the example of the recovery of an X-ray projection geometry. We show that the mathematical problem, which needs to be solved, is equivalent to the hand-eye calibration well studied in both computer vision and robotics community. We present a comparative study for the recovery of the motion and therefore projection, geometry using five different hand-eye calibration methods proposed in the literature. We compare the motion estimation results using expensive external stereo-based tracking systems with one obtained by using an integrated optical camera. The paper concludes by shouting that ever, if the motion estimation is more accurate when using an external sensor, the projection geometry is better estimated by the integrated optical camera. These results are of crucial importance to both medical imaging and augmented reality communities. |
doi_str_mv | 10.1109/CVPR.2000.855819 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_855819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>855819</ieee_id><sourcerecordid>27697580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e2bd259dbc6bbe685155d54e6388635249a61cb9d510a6f166ffebf05ad54a863</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMfoNTexVNO3rYm2U428SbFLygoRT0JSzY726Z0N2uyrfa_N1APnmYe7zcD7xFyydmEc6ZvZh-vi4lgjE0UgOL6iJxzJvNMaq6PyVgXihVSA5NS5Cf_vDMyjnGd7ljyNBTn5HOB1u8wuG5J--DXaAfnO7pE3-IQ9rd05b-poXaFpqfWtBiSMB3126HH0PjQ0qTwp8cuuh3SOGBAT-M-Le0FOW3MJuL4b47I-8P92-wpm788Ps_u5pkTLB8yFFUtQNeVlVWFUgEHqGGKMldK5iCm2khuK10DZ0Y2XMqmwaphYBJlEjIi14e_KcHXFuNQti5a3GxMh34bS5HKKECxBF4dQIeIZR9ca8K-PHSY_wIeL2RK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27697580</pqid></control><display><type>conference_proceeding</type><title>Recovering projection geometry: how a cheap camera can outperform an expensive stereo system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mischke, M.M. ; Navab, N.</creator><creatorcontrib>Mischke, M.M. ; Navab, N.</creatorcontrib><description>Recovering the projection geometry of an X-ray system or an augmented reality video see-through Head Mounted Display (HMD) are mathematically quite similar. Recent work in both medical imaging and augmented reality use external optical sensors in order to recover the motion of the imaging system. In this paper, we take the example of the recovery of an X-ray projection geometry. We show that the mathematical problem, which needs to be solved, is equivalent to the hand-eye calibration well studied in both computer vision and robotics community. We present a comparative study for the recovery of the motion and therefore projection, geometry using five different hand-eye calibration methods proposed in the literature. We compare the motion estimation results using expensive external stereo-based tracking systems with one obtained by using an integrated optical camera. The paper concludes by shouting that ever, if the motion estimation is more accurate when using an external sensor, the projection geometry is better estimated by the integrated optical camera. These results are of crucial importance to both medical imaging and augmented reality communities.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769506623</identifier><identifier>ISBN: 0769506623</identifier><identifier>EISSN: 1063-6919</identifier><identifier>DOI: 10.1109/CVPR.2000.855819</identifier><language>eng</language><publisher>IEEE</publisher><subject>Augmented reality ; Biomedical imaging ; Calibration ; Cameras ; Computational geometry ; Geometrical optics ; Motion estimation ; Optical sensors ; Robot vision systems ; X-ray imaging</subject><ispartof>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT, 2000, Vol.1, p.193-200 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/855819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/855819$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mischke, M.M.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><title>Recovering projection geometry: how a cheap camera can outperform an expensive stereo system</title><title>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT</title><addtitle>CVPR</addtitle><description>Recovering the projection geometry of an X-ray system or an augmented reality video see-through Head Mounted Display (HMD) are mathematically quite similar. Recent work in both medical imaging and augmented reality use external optical sensors in order to recover the motion of the imaging system. In this paper, we take the example of the recovery of an X-ray projection geometry. We show that the mathematical problem, which needs to be solved, is equivalent to the hand-eye calibration well studied in both computer vision and robotics community. We present a comparative study for the recovery of the motion and therefore projection, geometry using five different hand-eye calibration methods proposed in the literature. We compare the motion estimation results using expensive external stereo-based tracking systems with one obtained by using an integrated optical camera. The paper concludes by shouting that ever, if the motion estimation is more accurate when using an external sensor, the projection geometry is better estimated by the integrated optical camera. These results are of crucial importance to both medical imaging and augmented reality communities.</description><subject>Augmented reality</subject><subject>Biomedical imaging</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Computational geometry</subject><subject>Geometrical optics</subject><subject>Motion estimation</subject><subject>Optical sensors</subject><subject>Robot vision systems</subject><subject>X-ray imaging</subject><issn>1063-6919</issn><issn>1063-6919</issn><isbn>9780769506623</isbn><isbn>0769506623</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMfoNTexVNO3rYm2U428SbFLygoRT0JSzY726Z0N2uyrfa_N1APnmYe7zcD7xFyydmEc6ZvZh-vi4lgjE0UgOL6iJxzJvNMaq6PyVgXihVSA5NS5Cf_vDMyjnGd7ljyNBTn5HOB1u8wuG5J--DXaAfnO7pE3-IQ9rd05b-poXaFpqfWtBiSMB3126HH0PjQ0qTwp8cuuh3SOGBAT-M-Le0FOW3MJuL4b47I-8P92-wpm788Ps_u5pkTLB8yFFUtQNeVlVWFUgEHqGGKMldK5iCm2khuK10DZ0Y2XMqmwaphYBJlEjIi14e_KcHXFuNQti5a3GxMh34bS5HKKECxBF4dQIeIZR9ca8K-PHSY_wIeL2RK</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Mischke, M.M.</creator><creator>Navab, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>Recovering projection geometry: how a cheap camera can outperform an expensive stereo system</title><author>Mischke, M.M. ; Navab, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e2bd259dbc6bbe685155d54e6388635249a61cb9d510a6f166ffebf05ad54a863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Augmented reality</topic><topic>Biomedical imaging</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Computational geometry</topic><topic>Geometrical optics</topic><topic>Motion estimation</topic><topic>Optical sensors</topic><topic>Robot vision systems</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Mischke, M.M.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mischke, M.M.</au><au>Navab, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recovering projection geometry: how a cheap camera can outperform an expensive stereo system</atitle><btitle>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT</btitle><stitle>CVPR</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>193</spage><epage>200 vol.1</epage><pages>193-200 vol.1</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>9780769506623</isbn><isbn>0769506623</isbn><abstract>Recovering the projection geometry of an X-ray system or an augmented reality video see-through Head Mounted Display (HMD) are mathematically quite similar. Recent work in both medical imaging and augmented reality use external optical sensors in order to recover the motion of the imaging system. In this paper, we take the example of the recovery of an X-ray projection geometry. We show that the mathematical problem, which needs to be solved, is equivalent to the hand-eye calibration well studied in both computer vision and robotics community. We present a comparative study for the recovery of the motion and therefore projection, geometry using five different hand-eye calibration methods proposed in the literature. We compare the motion estimation results using expensive external stereo-based tracking systems with one obtained by using an integrated optical camera. The paper concludes by shouting that ever, if the motion estimation is more accurate when using an external sensor, the projection geometry is better estimated by the integrated optical camera. These results are of crucial importance to both medical imaging and augmented reality communities.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2000.855819</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT, 2000, Vol.1, p.193-200 vol.1 |
issn | 1063-6919 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_855819 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Augmented reality Biomedical imaging Calibration Cameras Computational geometry Geometrical optics Motion estimation Optical sensors Robot vision systems X-ray imaging |
title | Recovering projection geometry: how a cheap camera can outperform an expensive stereo system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recovering%20projection%20geometry:%20how%20a%20cheap%20camera%20can%20outperform%20an%20expensive%20stereo%20system&rft.btitle=PROC%20IEEE%20COMPUT%20SOC%20CONF%20COMPUT%20VISION%20PATTERN%20RECOGNIT&rft.au=Mischke,%20M.M.&rft.date=2000&rft.volume=1&rft.spage=193&rft.epage=200%20vol.1&rft.pages=193-200%20vol.1&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=9780769506623&rft.isbn_list=0769506623&rft_id=info:doi/10.1109/CVPR.2000.855819&rft_dat=%3Cproquest_6IE%3E27697580%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27697580&rft_id=info:pmid/&rft_ieee_id=855819&rfr_iscdi=true |