Bipartite Consensus on Matrix-Valued Weighted Networks

This brief examines bipartite consensus problem on matrix-valued weighted networks. First, it is shown that such networks achieve bipartite consensus if and only if the null space of the matrix-valued weighted Laplacian is spanned by a matrix-valued Gauge transformation, extending results for scalar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-08, Vol.66 (8), p.1441-1445
Hauptverfasser: Pan, Lulu, Shao, Haibin, Mesbahi, Mehran, Xi, Yugeng, Li, Dewei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1445
container_issue 8
container_start_page 1441
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 66
creator Pan, Lulu
Shao, Haibin
Mesbahi, Mehran
Xi, Yugeng
Li, Dewei
description This brief examines bipartite consensus problem on matrix-valued weighted networks. First, it is shown that such networks achieve bipartite consensus if and only if the null space of the matrix-valued weighted Laplacian is spanned by a matrix-valued Gauge transformation, extending results for scalar-valued weighted networks. Second, it is shown that if a structurally balanced matrix-valued weighted network has a "positive-negative spanning tree," then the bipartite consensus can be achieved. Lastly, we show that in the case where edges are weighted by either positive definite or negative definite matrices, bipartite consensus is achieved if and only if the network is structurally balanced. Simulation results are provided to demonstrate these theoretical observations.
doi_str_mv 10.1109/TCSII.2018.2884483
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8556038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8556038</ieee_id><sourcerecordid>2268439085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-cb8012702e562a18904e9ae283dbaee9ea382ac8a95643beda12a475031165543</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFXtvJ-ggRhUoFDhQ4Wm66hZSSFNsR8PekpOK0c5g3Kz3GTgUfCcHNxax4nExGwAWOAFEplHtsILTGVOZG7G-zMmmeq_yQHYWw4hwMlzBg2VW1cT5WkZKiqQPVoQ1JUyd3LvrqO31265YWyQtVr2-xC_cUvxr_Ho7ZwdKtA53s7pA9ja9nxW06fbiZFJfTtASjY1rOkQvIOZDOwAk0XJFxBCgXc0dkyEkEV6IzOlNyTgsnwKlccylEprWSQ3be725889lSiHbVtL7uXlqADJU0HHXXgr5V-iYET0u78dWH8z9WcLv1Y__82K0fu_PTQWc9VBHRP4BaZ1yi_AWzeWA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268439085</pqid></control><display><type>article</type><title>Bipartite Consensus on Matrix-Valued Weighted Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Lulu ; Shao, Haibin ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</creator><creatorcontrib>Pan, Lulu ; Shao, Haibin ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</creatorcontrib><description>This brief examines bipartite consensus problem on matrix-valued weighted networks. First, it is shown that such networks achieve bipartite consensus if and only if the null space of the matrix-valued weighted Laplacian is spanned by a matrix-valued Gauge transformation, extending results for scalar-valued weighted networks. Second, it is shown that if a structurally balanced matrix-valued weighted network has a "positive-negative spanning tree," then the bipartite consensus can be achieved. Lastly, we show that in the case where edges are weighted by either positive definite or negative definite matrices, bipartite consensus is achieved if and only if the network is structurally balanced. Simulation results are provided to demonstrate these theoretical observations.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2018.2884483</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>bipartite consensus ; Couplings ; Graph theory ; Laplace equations ; Mathematical analysis ; Matrix methods ; matrix-valued Guage transformation ; Matrix-valued weighted networks ; Networks ; Null space ; positive-negative spanning tree ; Protocols ; Simulation ; Social networking (online) ; structural balance ; Symmetric matrices</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2019-08, Vol.66 (8), p.1441-1445</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-cb8012702e562a18904e9ae283dbaee9ea382ac8a95643beda12a475031165543</citedby><cites>FETCH-LOGICAL-c295t-cb8012702e562a18904e9ae283dbaee9ea382ac8a95643beda12a475031165543</cites><orcidid>0000-0002-0604-7518 ; 0000-0003-3343-625X ; 0000-0001-6972-6588 ; 0000-0001-8869-5676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8556038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8556038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Lulu</creatorcontrib><creatorcontrib>Shao, Haibin</creatorcontrib><creatorcontrib>Mesbahi, Mehran</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><title>Bipartite Consensus on Matrix-Valued Weighted Networks</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>This brief examines bipartite consensus problem on matrix-valued weighted networks. First, it is shown that such networks achieve bipartite consensus if and only if the null space of the matrix-valued weighted Laplacian is spanned by a matrix-valued Gauge transformation, extending results for scalar-valued weighted networks. Second, it is shown that if a structurally balanced matrix-valued weighted network has a "positive-negative spanning tree," then the bipartite consensus can be achieved. Lastly, we show that in the case where edges are weighted by either positive definite or negative definite matrices, bipartite consensus is achieved if and only if the network is structurally balanced. Simulation results are provided to demonstrate these theoretical observations.</description><subject>bipartite consensus</subject><subject>Couplings</subject><subject>Graph theory</subject><subject>Laplace equations</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>matrix-valued Guage transformation</subject><subject>Matrix-valued weighted networks</subject><subject>Networks</subject><subject>Null space</subject><subject>positive-negative spanning tree</subject><subject>Protocols</subject><subject>Simulation</subject><subject>Social networking (online)</subject><subject>structural balance</subject><subject>Symmetric matrices</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFXtvJ-ggRhUoFDhQ4Wm66hZSSFNsR8PekpOK0c5g3Kz3GTgUfCcHNxax4nExGwAWOAFEplHtsILTGVOZG7G-zMmmeq_yQHYWw4hwMlzBg2VW1cT5WkZKiqQPVoQ1JUyd3LvrqO31265YWyQtVr2-xC_cUvxr_Ho7ZwdKtA53s7pA9ja9nxW06fbiZFJfTtASjY1rOkQvIOZDOwAk0XJFxBCgXc0dkyEkEV6IzOlNyTgsnwKlccylEprWSQ3be725889lSiHbVtL7uXlqADJU0HHXXgr5V-iYET0u78dWH8z9WcLv1Y__82K0fu_PTQWc9VBHRP4BaZ1yi_AWzeWA8</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Pan, Lulu</creator><creator>Shao, Haibin</creator><creator>Mesbahi, Mehran</creator><creator>Xi, Yugeng</creator><creator>Li, Dewei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid><orcidid>https://orcid.org/0000-0003-3343-625X</orcidid><orcidid>https://orcid.org/0000-0001-6972-6588</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid></search><sort><creationdate>20190801</creationdate><title>Bipartite Consensus on Matrix-Valued Weighted Networks</title><author>Pan, Lulu ; Shao, Haibin ; Mesbahi, Mehran ; Xi, Yugeng ; Li, Dewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-cb8012702e562a18904e9ae283dbaee9ea382ac8a95643beda12a475031165543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bipartite consensus</topic><topic>Couplings</topic><topic>Graph theory</topic><topic>Laplace equations</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>matrix-valued Guage transformation</topic><topic>Matrix-valued weighted networks</topic><topic>Networks</topic><topic>Null space</topic><topic>positive-negative spanning tree</topic><topic>Protocols</topic><topic>Simulation</topic><topic>Social networking (online)</topic><topic>structural balance</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Lulu</creatorcontrib><creatorcontrib>Shao, Haibin</creatorcontrib><creatorcontrib>Mesbahi, Mehran</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Lulu</au><au>Shao, Haibin</au><au>Mesbahi, Mehran</au><au>Xi, Yugeng</au><au>Li, Dewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipartite Consensus on Matrix-Valued Weighted Networks</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>66</volume><issue>8</issue><spage>1441</spage><epage>1445</epage><pages>1441-1445</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief examines bipartite consensus problem on matrix-valued weighted networks. First, it is shown that such networks achieve bipartite consensus if and only if the null space of the matrix-valued weighted Laplacian is spanned by a matrix-valued Gauge transformation, extending results for scalar-valued weighted networks. Second, it is shown that if a structurally balanced matrix-valued weighted network has a "positive-negative spanning tree," then the bipartite consensus can be achieved. Lastly, we show that in the case where edges are weighted by either positive definite or negative definite matrices, bipartite consensus is achieved if and only if the network is structurally balanced. Simulation results are provided to demonstrate these theoretical observations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2018.2884483</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid><orcidid>https://orcid.org/0000-0003-3343-625X</orcidid><orcidid>https://orcid.org/0000-0001-6972-6588</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2019-08, Vol.66 (8), p.1441-1445
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_8556038
source IEEE Electronic Library (IEL)
subjects bipartite consensus
Couplings
Graph theory
Laplace equations
Mathematical analysis
Matrix methods
matrix-valued Guage transformation
Matrix-valued weighted networks
Networks
Null space
positive-negative spanning tree
Protocols
Simulation
Social networking (online)
structural balance
Symmetric matrices
title Bipartite Consensus on Matrix-Valued Weighted Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipartite%20Consensus%20on%20Matrix-Valued%20Weighted%20Networks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Pan,%20Lulu&rft.date=2019-08-01&rft.volume=66&rft.issue=8&rft.spage=1441&rft.epage=1445&rft.pages=1441-1445&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2018.2884483&rft_dat=%3Cproquest_RIE%3E2268439085%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268439085&rft_id=info:pmid/&rft_ieee_id=8556038&rfr_iscdi=true