Multimodal Face-Pose Estimation With Multitask Manifold Deep Learning
Face-pose estimation aims at estimating the gazing direction with two-dimensional face images. It gives important communicative information and visual saliency. However, it is challenging because of lights, background, face orientations, and appearance visibility. Therefore, a descriptive representa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2019-07, Vol.15 (7), p.3952-3961 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3961 |
---|---|
container_issue | 7 |
container_start_page | 3952 |
container_title | IEEE transactions on industrial informatics |
container_volume | 15 |
creator | Hong, Chaoqun Yu, Jun Zhang, Jian Jin, Xiongnan Lee, Kyong-Ho |
description | Face-pose estimation aims at estimating the gazing direction with two-dimensional face images. It gives important communicative information and visual saliency. However, it is challenging because of lights, background, face orientations, and appearance visibility. Therefore, a descriptive representation of face images and mapping it to poses are critical. In this paper, we use multimodal data and propose a novel face-pose estimation framework named multitask manifold deep learning (\text{M}^2\text{DL}). It is based on feature extraction with improved convolutional neural networks (CNNs) and multimodal mapping relationship with multitask learning. In the proposed CNNs, manifold regularized convolutional layers learn the relationship between outputs of neurons in a low-rank space. Besides, in the proposed mapping relationship learning method, different modals of face representations are naturally combined by applying multitask learning with incoherent sparse and low-rank learning with a least-squares loss. Experimental results on three challenging benchmark datasets demonstrate the performance of \text{M}^2\text{DL}. |
doi_str_mv | 10.1109/TII.2018.2884211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8554134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8554134</ieee_id><sourcerecordid>2253469232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5760188da59c074e2d34d4b3cc16db8a3a1b53e56db525415b41e3edb82147ed3</originalsourceid><addsrcrecordid>eNo9UD1PwzAQtRBIlMKOxGKJOcXns5tkRKWFSq1gKGK0nPgKKSEudjrw73FpxXRf7929e4xdgxgBiPJuNZ-PpIBiJItCSYATNoBSQSaEFqcp1xoylALP2UWMGyEwF1gO2HS5a_vmyzvb8pmtKXvxkfg0pp7tG9_xt6b_4H-g3sZPvrRds_at4w9EW74gG7qme79kZ2vbRro6xiF7nU1Xk6ds8fw4n9wvslqW0Gc6HyeFhbO6rEWuSDpUTlVY1zB2VWHRQqWRdCq01Ap0pYCQ0kiCysnhkN0e9m6D_95R7M3G70KXThopNapxKVEmlDig6uBjDLQ225DeCT8GhNmbZZJZZm-WOZqVKDcHSkNE__BCJxGo8Bd8a2Q3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253469232</pqid></control><display><type>article</type><title>Multimodal Face-Pose Estimation With Multitask Manifold Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Chaoqun ; Yu, Jun ; Zhang, Jian ; Jin, Xiongnan ; Lee, Kyong-Ho</creator><creatorcontrib>Hong, Chaoqun ; Yu, Jun ; Zhang, Jian ; Jin, Xiongnan ; Lee, Kyong-Ho</creatorcontrib><description><![CDATA[Face-pose estimation aims at estimating the gazing direction with two-dimensional face images. It gives important communicative information and visual saliency. However, it is challenging because of lights, background, face orientations, and appearance visibility. Therefore, a descriptive representation of face images and mapping it to poses are critical. In this paper, we use multimodal data and propose a novel face-pose estimation framework named multitask manifold deep learning (<inline-formula><tex-math notation="LaTeX">\text{M}^2\text{DL}</tex-math></inline-formula>). It is based on feature extraction with improved convolutional neural networks (CNNs) and multimodal mapping relationship with multitask learning. In the proposed CNNs, manifold regularized convolutional layers learn the relationship between outputs of neurons in a low-rank space. Besides, in the proposed mapping relationship learning method, different modals of face representations are naturally combined by applying multitask learning with incoherent sparse and low-rank learning with a least-squares loss. Experimental results on three challenging benchmark datasets demonstrate the performance of <inline-formula><tex-math notation="LaTeX">\text{M}^2\text{DL}</tex-math></inline-formula>.]]></description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2884211</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolutional neural networks (CNNs) ; Deep learning ; Face ; face-pose estimation ; Feature extraction ; Informatics ; low-rank learning ; Machine learning ; Manifolds ; Mapping ; multitask learning ; Neurons ; Pose estimation ; Representations ; Task analysis ; Visibility</subject><ispartof>IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.3952-3961</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5760188da59c074e2d34d4b3cc16db8a3a1b53e56db525415b41e3edb82147ed3</citedby><cites>FETCH-LOGICAL-c291t-5760188da59c074e2d34d4b3cc16db8a3a1b53e56db525415b41e3edb82147ed3</cites><orcidid>0000-0003-1922-7283 ; 0000-0001-5080-1883 ; 0000-0002-2417-1889 ; 0000-0002-1581-917X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8554134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8554134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Chaoqun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Jin, Xiongnan</creatorcontrib><creatorcontrib>Lee, Kyong-Ho</creatorcontrib><title>Multimodal Face-Pose Estimation With Multitask Manifold Deep Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description><![CDATA[Face-pose estimation aims at estimating the gazing direction with two-dimensional face images. It gives important communicative information and visual saliency. However, it is challenging because of lights, background, face orientations, and appearance visibility. Therefore, a descriptive representation of face images and mapping it to poses are critical. In this paper, we use multimodal data and propose a novel face-pose estimation framework named multitask manifold deep learning (<inline-formula><tex-math notation="LaTeX">\text{M}^2\text{DL}</tex-math></inline-formula>). It is based on feature extraction with improved convolutional neural networks (CNNs) and multimodal mapping relationship with multitask learning. In the proposed CNNs, manifold regularized convolutional layers learn the relationship between outputs of neurons in a low-rank space. Besides, in the proposed mapping relationship learning method, different modals of face representations are naturally combined by applying multitask learning with incoherent sparse and low-rank learning with a least-squares loss. Experimental results on three challenging benchmark datasets demonstrate the performance of <inline-formula><tex-math notation="LaTeX">\text{M}^2\text{DL}</tex-math></inline-formula>.]]></description><subject>Artificial neural networks</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Deep learning</subject><subject>Face</subject><subject>face-pose estimation</subject><subject>Feature extraction</subject><subject>Informatics</subject><subject>low-rank learning</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Mapping</subject><subject>multitask learning</subject><subject>Neurons</subject><subject>Pose estimation</subject><subject>Representations</subject><subject>Task analysis</subject><subject>Visibility</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UD1PwzAQtRBIlMKOxGKJOcXns5tkRKWFSq1gKGK0nPgKKSEudjrw73FpxXRf7929e4xdgxgBiPJuNZ-PpIBiJItCSYATNoBSQSaEFqcp1xoylALP2UWMGyEwF1gO2HS5a_vmyzvb8pmtKXvxkfg0pp7tG9_xt6b_4H-g3sZPvrRds_at4w9EW74gG7qme79kZ2vbRro6xiF7nU1Xk6ds8fw4n9wvslqW0Gc6HyeFhbO6rEWuSDpUTlVY1zB2VWHRQqWRdCq01Ap0pYCQ0kiCysnhkN0e9m6D_95R7M3G70KXThopNapxKVEmlDig6uBjDLQ225DeCT8GhNmbZZJZZm-WOZqVKDcHSkNE__BCJxGo8Bd8a2Q3</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hong, Chaoqun</creator><creator>Yu, Jun</creator><creator>Zhang, Jian</creator><creator>Jin, Xiongnan</creator><creator>Lee, Kyong-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1922-7283</orcidid><orcidid>https://orcid.org/0000-0001-5080-1883</orcidid><orcidid>https://orcid.org/0000-0002-2417-1889</orcidid><orcidid>https://orcid.org/0000-0002-1581-917X</orcidid></search><sort><creationdate>20190701</creationdate><title>Multimodal Face-Pose Estimation With Multitask Manifold Deep Learning</title><author>Hong, Chaoqun ; Yu, Jun ; Zhang, Jian ; Jin, Xiongnan ; Lee, Kyong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5760188da59c074e2d34d4b3cc16db8a3a1b53e56db525415b41e3edb82147ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Deep learning</topic><topic>Face</topic><topic>face-pose estimation</topic><topic>Feature extraction</topic><topic>Informatics</topic><topic>low-rank learning</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Mapping</topic><topic>multitask learning</topic><topic>Neurons</topic><topic>Pose estimation</topic><topic>Representations</topic><topic>Task analysis</topic><topic>Visibility</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Chaoqun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Jin, Xiongnan</creatorcontrib><creatorcontrib>Lee, Kyong-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Chaoqun</au><au>Yu, Jun</au><au>Zhang, Jian</au><au>Jin, Xiongnan</au><au>Lee, Kyong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Face-Pose Estimation With Multitask Manifold Deep Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>3952</spage><epage>3961</epage><pages>3952-3961</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract><![CDATA[Face-pose estimation aims at estimating the gazing direction with two-dimensional face images. It gives important communicative information and visual saliency. However, it is challenging because of lights, background, face orientations, and appearance visibility. Therefore, a descriptive representation of face images and mapping it to poses are critical. In this paper, we use multimodal data and propose a novel face-pose estimation framework named multitask manifold deep learning (<inline-formula><tex-math notation="LaTeX">\text{M}^2\text{DL}</tex-math></inline-formula>). It is based on feature extraction with improved convolutional neural networks (CNNs) and multimodal mapping relationship with multitask learning. In the proposed CNNs, manifold regularized convolutional layers learn the relationship between outputs of neurons in a low-rank space. Besides, in the proposed mapping relationship learning method, different modals of face representations are naturally combined by applying multitask learning with incoherent sparse and low-rank learning with a least-squares loss. Experimental results on three challenging benchmark datasets demonstrate the performance of <inline-formula><tex-math notation="LaTeX">\text{M}^2\text{DL}</tex-math></inline-formula>.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2884211</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1922-7283</orcidid><orcidid>https://orcid.org/0000-0001-5080-1883</orcidid><orcidid>https://orcid.org/0000-0002-2417-1889</orcidid><orcidid>https://orcid.org/0000-0002-1581-917X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.3952-3961 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_8554134 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Convolutional neural networks (CNNs) Deep learning Face face-pose estimation Feature extraction Informatics low-rank learning Machine learning Manifolds Mapping multitask learning Neurons Pose estimation Representations Task analysis Visibility |
title | Multimodal Face-Pose Estimation With Multitask Manifold Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Face-Pose%20Estimation%20With%20Multitask%20Manifold%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Hong,%20Chaoqun&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=3952&rft.epage=3961&rft.pages=3952-3961&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2884211&rft_dat=%3Cproquest_RIE%3E2253469232%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253469232&rft_id=info:pmid/&rft_ieee_id=8554134&rfr_iscdi=true |