Excimer emission from microhollow cathode discharges

Summary form only given. Microhollow cathode discharges (MHCDs) combine the possibility for direct current, high-pressure operation with non-equilibrium plasma conditions necessary for efficient excimer formation. When operated in rare gases (Xe, Ar, Ne) or rare gas halides (ArF, XeCl) these dischar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: El-Habachi, A., Moselhy, M., Stark, R.H., Schoenbach, K.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 254
container_title
container_volume
creator El-Habachi, A.
Moselhy, M.
Stark, R.H.
Schoenbach, K.H.
description Summary form only given. Microhollow cathode discharges (MHCDs) combine the possibility for direct current, high-pressure operation with non-equilibrium plasma conditions necessary for efficient excimer formation. When operated in rare gases (Xe, Ar, Ne) or rare gas halides (ArF, XeCl) these discharges were found to be intense sources of excimer radiation. Conversion efficiencies (from input electrical power to output optical power) of several percent were achieved. Although modeling results predict a monotonous increase of radiant power with pressure, in MHCDs it has a maximum at 400 Torr. The observed maximum of the radiant power at constant current was found to be due to the nonlinear reduction of the excimer source area with increasing pressure. The excimer source is located in the cathode opening only at high pressures and low currents. Otherwise, the source extends over the cathode surface outside of the hole. The emitting area decreases by a factor of four over the pressure range from 200 Torr to 760 Torr, whereas the radiant emittance increases monotonically with pressure up to 10 W/cm/sup 2/ at atmospheric pressure. For DC operation, the current was limited to 8 mA to avoid thermal damage.
doi_str_mv 10.1109/PLASMA.2000.855103
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_855103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>855103</ieee_id><sourcerecordid>855103</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-6fb41c3a31716510af863d3a481372b2161fdaa9ff000bec7a6d99da96be1c4b3</originalsourceid><addsrcrecordid>eNotj8tKxDAYRoMXsI7zArPqC7T-uSfLMoyOUFFw9kOai420RpIB9e0tjKtvdQ7nQ2iDocUY9P1r3709dy0BgFZxjoFeoIpwKRpJQF2iW5AKKNeKqCtUgaTQaMLYDVqX8rFAwBhnXFaI7X5snH2u_RxLiemzDjnN9RxtTmOapvRdW3Mak_O1i8WOJr_7coeug5mKX__vCh0edoftvulfHp-2Xd9EJU-NCAPDlhqKJRZLoglKUEcNU5hKMhAscHDG6BCWnsFbaYTT2hktBo8tG-gKbc7a6L0_fuU4m_x7PN-lf_zvR6E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Excimer emission from microhollow cathode discharges</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>El-Habachi, A. ; Moselhy, M. ; Stark, R.H. ; Schoenbach, K.H.</creator><creatorcontrib>El-Habachi, A. ; Moselhy, M. ; Stark, R.H. ; Schoenbach, K.H.</creatorcontrib><description>Summary form only given. Microhollow cathode discharges (MHCDs) combine the possibility for direct current, high-pressure operation with non-equilibrium plasma conditions necessary for efficient excimer formation. When operated in rare gases (Xe, Ar, Ne) or rare gas halides (ArF, XeCl) these discharges were found to be intense sources of excimer radiation. Conversion efficiencies (from input electrical power to output optical power) of several percent were achieved. Although modeling results predict a monotonous increase of radiant power with pressure, in MHCDs it has a maximum at 400 Torr. The observed maximum of the radiant power at constant current was found to be due to the nonlinear reduction of the excimer source area with increasing pressure. The excimer source is located in the cathode opening only at high pressures and low currents. Otherwise, the source extends over the cathode surface outside of the hole. The emitting area decreases by a factor of four over the pressure range from 200 Torr to 760 Torr, whereas the radiant emittance increases monotonically with pressure up to 10 W/cm/sup 2/ at atmospheric pressure. For DC operation, the current was limited to 8 mA to avoid thermal damage.</description><identifier>ISSN: 0730-9244</identifier><identifier>ISBN: 0780359828</identifier><identifier>ISBN: 9780780359826</identifier><identifier>EISSN: 2576-7208</identifier><identifier>DOI: 10.1109/PLASMA.2000.855103</identifier><language>eng</language><publisher>IEEE</publisher><subject>Argon ; Atmospheric measurements ; Cathodes ; Fault location ; Gases ; Light sources ; Plasma sources ; Power measurement ; Predictive models ; Space vector pulse width modulation</subject><ispartof>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087), 2000, p.254</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/855103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/855103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>El-Habachi, A.</creatorcontrib><creatorcontrib>Moselhy, M.</creatorcontrib><creatorcontrib>Stark, R.H.</creatorcontrib><creatorcontrib>Schoenbach, K.H.</creatorcontrib><title>Excimer emission from microhollow cathode discharges</title><title>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087)</title><addtitle>PLASMA</addtitle><description>Summary form only given. Microhollow cathode discharges (MHCDs) combine the possibility for direct current, high-pressure operation with non-equilibrium plasma conditions necessary for efficient excimer formation. When operated in rare gases (Xe, Ar, Ne) or rare gas halides (ArF, XeCl) these discharges were found to be intense sources of excimer radiation. Conversion efficiencies (from input electrical power to output optical power) of several percent were achieved. Although modeling results predict a monotonous increase of radiant power with pressure, in MHCDs it has a maximum at 400 Torr. The observed maximum of the radiant power at constant current was found to be due to the nonlinear reduction of the excimer source area with increasing pressure. The excimer source is located in the cathode opening only at high pressures and low currents. Otherwise, the source extends over the cathode surface outside of the hole. The emitting area decreases by a factor of four over the pressure range from 200 Torr to 760 Torr, whereas the radiant emittance increases monotonically with pressure up to 10 W/cm/sup 2/ at atmospheric pressure. For DC operation, the current was limited to 8 mA to avoid thermal damage.</description><subject>Argon</subject><subject>Atmospheric measurements</subject><subject>Cathodes</subject><subject>Fault location</subject><subject>Gases</subject><subject>Light sources</subject><subject>Plasma sources</subject><subject>Power measurement</subject><subject>Predictive models</subject><subject>Space vector pulse width modulation</subject><issn>0730-9244</issn><issn>2576-7208</issn><isbn>0780359828</isbn><isbn>9780780359826</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxDAYRoMXsI7zArPqC7T-uSfLMoyOUFFw9kOai420RpIB9e0tjKtvdQ7nQ2iDocUY9P1r3709dy0BgFZxjoFeoIpwKRpJQF2iW5AKKNeKqCtUgaTQaMLYDVqX8rFAwBhnXFaI7X5snH2u_RxLiemzDjnN9RxtTmOapvRdW3Mak_O1i8WOJr_7coeug5mKX__vCh0edoftvulfHp-2Xd9EJU-NCAPDlhqKJRZLoglKUEcNU5hKMhAscHDG6BCWnsFbaYTT2hktBo8tG-gKbc7a6L0_fuU4m_x7PN-lf_zvR6E</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>El-Habachi, A.</creator><creator>Moselhy, M.</creator><creator>Stark, R.H.</creator><creator>Schoenbach, K.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Excimer emission from microhollow cathode discharges</title><author>El-Habachi, A. ; Moselhy, M. ; Stark, R.H. ; Schoenbach, K.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-6fb41c3a31716510af863d3a481372b2161fdaa9ff000bec7a6d99da96be1c4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Argon</topic><topic>Atmospheric measurements</topic><topic>Cathodes</topic><topic>Fault location</topic><topic>Gases</topic><topic>Light sources</topic><topic>Plasma sources</topic><topic>Power measurement</topic><topic>Predictive models</topic><topic>Space vector pulse width modulation</topic><toplevel>online_resources</toplevel><creatorcontrib>El-Habachi, A.</creatorcontrib><creatorcontrib>Moselhy, M.</creatorcontrib><creatorcontrib>Stark, R.H.</creatorcontrib><creatorcontrib>Schoenbach, K.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>El-Habachi, A.</au><au>Moselhy, M.</au><au>Stark, R.H.</au><au>Schoenbach, K.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Excimer emission from microhollow cathode discharges</atitle><btitle>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087)</btitle><stitle>PLASMA</stitle><date>2000</date><risdate>2000</risdate><spage>254</spage><pages>254-</pages><issn>0730-9244</issn><eissn>2576-7208</eissn><isbn>0780359828</isbn><isbn>9780780359826</isbn><abstract>Summary form only given. Microhollow cathode discharges (MHCDs) combine the possibility for direct current, high-pressure operation with non-equilibrium plasma conditions necessary for efficient excimer formation. When operated in rare gases (Xe, Ar, Ne) or rare gas halides (ArF, XeCl) these discharges were found to be intense sources of excimer radiation. Conversion efficiencies (from input electrical power to output optical power) of several percent were achieved. Although modeling results predict a monotonous increase of radiant power with pressure, in MHCDs it has a maximum at 400 Torr. The observed maximum of the radiant power at constant current was found to be due to the nonlinear reduction of the excimer source area with increasing pressure. The excimer source is located in the cathode opening only at high pressures and low currents. Otherwise, the source extends over the cathode surface outside of the hole. The emitting area decreases by a factor of four over the pressure range from 200 Torr to 760 Torr, whereas the radiant emittance increases monotonically with pressure up to 10 W/cm/sup 2/ at atmospheric pressure. For DC operation, the current was limited to 8 mA to avoid thermal damage.</abstract><pub>IEEE</pub><doi>10.1109/PLASMA.2000.855103</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0730-9244
ispartof ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087), 2000, p.254
issn 0730-9244
2576-7208
language eng
recordid cdi_ieee_primary_855103
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Argon
Atmospheric measurements
Cathodes
Fault location
Gases
Light sources
Plasma sources
Power measurement
Predictive models
Space vector pulse width modulation
title Excimer emission from microhollow cathode discharges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Excimer%20emission%20from%20microhollow%20cathode%20discharges&rft.btitle=ICOPS%202000.%20IEEE%20Conference%20Record%20-%20Abstracts.%2027th%20IEEE%20International%20Conference%20on%20Plasma%20Science%20(Cat.%20No.00CH37087)&rft.au=El-Habachi,%20A.&rft.date=2000&rft.spage=254&rft.pages=254-&rft.issn=0730-9244&rft.eissn=2576-7208&rft.isbn=0780359828&rft.isbn_list=9780780359826&rft_id=info:doi/10.1109/PLASMA.2000.855103&rft_dat=%3Cieee_6IE%3E855103%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=855103&rfr_iscdi=true