Modelling of a transferred arc in presence of an external magnetic field

Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Blais, A., Merkhouf, A., Proulx, P., Boulos, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 222
container_title
container_volume
creator Blais, A.
Merkhouf, A.
Proulx, P.
Boulos, M.
description Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas.
doi_str_mv 10.1109/PLASMA.2000.855046
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_855046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>855046</ieee_id><sourcerecordid>855046</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-b530374f367d9e812005ad95d988fddff28c44a078743d03695f28622e3927433</originalsourceid><addsrcrecordid>eNotUM1KAzEYDP6Aa-0L9JQX2PXb_GyS41LUClsU7L3EzZcSSdOS7EHf3sV6GhhmhpkhZNVC07ZgHt-H_mPbNwwAGi0liO6KVEyqrlYM9DW5B6WBS6OZviEVKA61YULckWUpX7MJhJBCqopstieHMYZ0oCdPLZ2yTcVjzuiozSMNiZ4zFkwj_gkSxe8Jc7KRHu0h4RRG6gNG90BuvY0Fl_-4ILvnp916Uw9vL6_rfqiDVlP9KTlwJTzvlDOo23mAtM5IZ7T2znnP9CiEndsrwR3wzsiZ6hhDbthM8QVZXWIDIu7PORxt_tlfLuC_AJxMow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modelling of a transferred arc in presence of an external magnetic field</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blais, A. ; Merkhouf, A. ; Proulx, P. ; Boulos, M.</creator><creatorcontrib>Blais, A. ; Merkhouf, A. ; Proulx, P. ; Boulos, M.</creatorcontrib><description>Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas.</description><identifier>ISSN: 0730-9244</identifier><identifier>ISBN: 0780359828</identifier><identifier>ISBN: 9780780359826</identifier><identifier>EISSN: 2576-7208</identifier><identifier>DOI: 10.1109/PLASMA.2000.855046</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Computational fluid dynamics ; Electromagnetic fields ; Electromagnetic modeling ; Furnaces ; Magnetic fields ; Mathematical model ; Navier-Stokes equations ; Plasma properties ; Plasma temperature</subject><ispartof>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087), 2000, p.222</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/855046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/855046$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blais, A.</creatorcontrib><creatorcontrib>Merkhouf, A.</creatorcontrib><creatorcontrib>Proulx, P.</creatorcontrib><creatorcontrib>Boulos, M.</creatorcontrib><title>Modelling of a transferred arc in presence of an external magnetic field</title><title>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087)</title><addtitle>PLASMA</addtitle><description>Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas.</description><subject>Algorithms</subject><subject>Computational fluid dynamics</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic modeling</subject><subject>Furnaces</subject><subject>Magnetic fields</subject><subject>Mathematical model</subject><subject>Navier-Stokes equations</subject><subject>Plasma properties</subject><subject>Plasma temperature</subject><issn>0730-9244</issn><issn>2576-7208</issn><isbn>0780359828</isbn><isbn>9780780359826</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1KAzEYDP6Aa-0L9JQX2PXb_GyS41LUClsU7L3EzZcSSdOS7EHf3sV6GhhmhpkhZNVC07ZgHt-H_mPbNwwAGi0liO6KVEyqrlYM9DW5B6WBS6OZviEVKA61YULckWUpX7MJhJBCqopstieHMYZ0oCdPLZ2yTcVjzuiozSMNiZ4zFkwj_gkSxe8Jc7KRHu0h4RRG6gNG90BuvY0Fl_-4ILvnp916Uw9vL6_rfqiDVlP9KTlwJTzvlDOo23mAtM5IZ7T2znnP9CiEndsrwR3wzsiZ6hhDbthM8QVZXWIDIu7PORxt_tlfLuC_AJxMow</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Blais, A.</creator><creator>Merkhouf, A.</creator><creator>Proulx, P.</creator><creator>Boulos, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Modelling of a transferred arc in presence of an external magnetic field</title><author>Blais, A. ; Merkhouf, A. ; Proulx, P. ; Boulos, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-b530374f367d9e812005ad95d988fddff28c44a078743d03695f28622e3927433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Computational fluid dynamics</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic modeling</topic><topic>Furnaces</topic><topic>Magnetic fields</topic><topic>Mathematical model</topic><topic>Navier-Stokes equations</topic><topic>Plasma properties</topic><topic>Plasma temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Blais, A.</creatorcontrib><creatorcontrib>Merkhouf, A.</creatorcontrib><creatorcontrib>Proulx, P.</creatorcontrib><creatorcontrib>Boulos, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blais, A.</au><au>Merkhouf, A.</au><au>Proulx, P.</au><au>Boulos, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modelling of a transferred arc in presence of an external magnetic field</atitle><btitle>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087)</btitle><stitle>PLASMA</stitle><date>2000</date><risdate>2000</risdate><spage>222</spage><pages>222-</pages><issn>0730-9244</issn><eissn>2576-7208</eissn><isbn>0780359828</isbn><isbn>9780780359826</isbn><abstract>Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas.</abstract><pub>IEEE</pub><doi>10.1109/PLASMA.2000.855046</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0730-9244
ispartof ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087), 2000, p.222
issn 0730-9244
2576-7208
language eng
recordid cdi_ieee_primary_855046
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Computational fluid dynamics
Electromagnetic fields
Electromagnetic modeling
Furnaces
Magnetic fields
Mathematical model
Navier-Stokes equations
Plasma properties
Plasma temperature
title Modelling of a transferred arc in presence of an external magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modelling%20of%20a%20transferred%20arc%20in%20presence%20of%20an%20external%20magnetic%20field&rft.btitle=ICOPS%202000.%20IEEE%20Conference%20Record%20-%20Abstracts.%2027th%20IEEE%20International%20Conference%20on%20Plasma%20Science%20(Cat.%20No.00CH37087)&rft.au=Blais,%20A.&rft.date=2000&rft.spage=222&rft.pages=222-&rft.issn=0730-9244&rft.eissn=2576-7208&rft.isbn=0780359828&rft.isbn_list=9780780359826&rft_id=info:doi/10.1109/PLASMA.2000.855046&rft_dat=%3Cieee_6IE%3E855046%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=855046&rfr_iscdi=true