Modelling of a transferred arc in presence of an external magnetic field
Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 222 |
container_title | |
container_volume | |
creator | Blais, A. Merkhouf, A. Proulx, P. Boulos, M. |
description | Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas. |
doi_str_mv | 10.1109/PLASMA.2000.855046 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_855046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>855046</ieee_id><sourcerecordid>855046</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-b530374f367d9e812005ad95d988fddff28c44a078743d03695f28622e3927433</originalsourceid><addsrcrecordid>eNotUM1KAzEYDP6Aa-0L9JQX2PXb_GyS41LUClsU7L3EzZcSSdOS7EHf3sV6GhhmhpkhZNVC07ZgHt-H_mPbNwwAGi0liO6KVEyqrlYM9DW5B6WBS6OZviEVKA61YULckWUpX7MJhJBCqopstieHMYZ0oCdPLZ2yTcVjzuiozSMNiZ4zFkwj_gkSxe8Jc7KRHu0h4RRG6gNG90BuvY0Fl_-4ILvnp916Uw9vL6_rfqiDVlP9KTlwJTzvlDOo23mAtM5IZ7T2znnP9CiEndsrwR3wzsiZ6hhDbthM8QVZXWIDIu7PORxt_tlfLuC_AJxMow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modelling of a transferred arc in presence of an external magnetic field</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blais, A. ; Merkhouf, A. ; Proulx, P. ; Boulos, M.</creator><creatorcontrib>Blais, A. ; Merkhouf, A. ; Proulx, P. ; Boulos, M.</creatorcontrib><description>Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas.</description><identifier>ISSN: 0730-9244</identifier><identifier>ISBN: 0780359828</identifier><identifier>ISBN: 9780780359826</identifier><identifier>EISSN: 2576-7208</identifier><identifier>DOI: 10.1109/PLASMA.2000.855046</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Computational fluid dynamics ; Electromagnetic fields ; Electromagnetic modeling ; Furnaces ; Magnetic fields ; Mathematical model ; Navier-Stokes equations ; Plasma properties ; Plasma temperature</subject><ispartof>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087), 2000, p.222</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/855046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/855046$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blais, A.</creatorcontrib><creatorcontrib>Merkhouf, A.</creatorcontrib><creatorcontrib>Proulx, P.</creatorcontrib><creatorcontrib>Boulos, M.</creatorcontrib><title>Modelling of a transferred arc in presence of an external magnetic field</title><title>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087)</title><addtitle>PLASMA</addtitle><description>Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas.</description><subject>Algorithms</subject><subject>Computational fluid dynamics</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic modeling</subject><subject>Furnaces</subject><subject>Magnetic fields</subject><subject>Mathematical model</subject><subject>Navier-Stokes equations</subject><subject>Plasma properties</subject><subject>Plasma temperature</subject><issn>0730-9244</issn><issn>2576-7208</issn><isbn>0780359828</isbn><isbn>9780780359826</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1KAzEYDP6Aa-0L9JQX2PXb_GyS41LUClsU7L3EzZcSSdOS7EHf3sV6GhhmhpkhZNVC07ZgHt-H_mPbNwwAGi0liO6KVEyqrlYM9DW5B6WBS6OZviEVKA61YULckWUpX7MJhJBCqopstieHMYZ0oCdPLZ2yTcVjzuiozSMNiZ4zFkwj_gkSxe8Jc7KRHu0h4RRG6gNG90BuvY0Fl_-4ILvnp916Uw9vL6_rfqiDVlP9KTlwJTzvlDOo23mAtM5IZ7T2znnP9CiEndsrwR3wzsiZ6hhDbthM8QVZXWIDIu7PORxt_tlfLuC_AJxMow</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Blais, A.</creator><creator>Merkhouf, A.</creator><creator>Proulx, P.</creator><creator>Boulos, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Modelling of a transferred arc in presence of an external magnetic field</title><author>Blais, A. ; Merkhouf, A. ; Proulx, P. ; Boulos, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-b530374f367d9e812005ad95d988fddff28c44a078743d03695f28622e3927433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Computational fluid dynamics</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic modeling</topic><topic>Furnaces</topic><topic>Magnetic fields</topic><topic>Mathematical model</topic><topic>Navier-Stokes equations</topic><topic>Plasma properties</topic><topic>Plasma temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Blais, A.</creatorcontrib><creatorcontrib>Merkhouf, A.</creatorcontrib><creatorcontrib>Proulx, P.</creatorcontrib><creatorcontrib>Boulos, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blais, A.</au><au>Merkhouf, A.</au><au>Proulx, P.</au><au>Boulos, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modelling of a transferred arc in presence of an external magnetic field</atitle><btitle>ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087)</btitle><stitle>PLASMA</stitle><date>2000</date><risdate>2000</risdate><spage>222</spage><pages>222-</pages><issn>0730-9244</issn><eissn>2576-7208</eissn><isbn>0780359828</isbn><isbn>9780780359826</isbn><abstract>Summary form only given. Transferred arcs have been widely studied giving rise to a vast experimental and mathematical modeling literature on the subject. These provide a valuable insight as to the flow, temperature and electromagnetic fields in the arc column. In industrial furnaces, where multiple arcs can be present, the magnetic field created by one are can have an influence on the behavior of the other arcs. To model those interactions, a 3D model is developed with emphasis placed on the formulation of the electromagnetic field equations to obtain a form that would be convenient for both 2D and 3D representation. In order to gain flexibility and to speed up the calculations, the computational fluid dynamics code FLUENT is used. The latter is based on the resolution of the Navier-Stokes equations, using the Patankar control volume method. The electromagnetic fields are represented by three transport equations for the scalar potential /spl phi/ and the two components of the vector potential, Ar and Az. These equations and the source terms representing Joule heating effect, net volumetric emission coefficient and Lorentz forces are added in FLUENT through user-defined subroutines. Other subroutines are also implemented to allow for the variation with temperature and pressure of the thermodynamic and transport properties of the plasma gas.</abstract><pub>IEEE</pub><doi>10.1109/PLASMA.2000.855046</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0730-9244 |
ispartof | ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087), 2000, p.222 |
issn | 0730-9244 2576-7208 |
language | eng |
recordid | cdi_ieee_primary_855046 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Computational fluid dynamics Electromagnetic fields Electromagnetic modeling Furnaces Magnetic fields Mathematical model Navier-Stokes equations Plasma properties Plasma temperature |
title | Modelling of a transferred arc in presence of an external magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modelling%20of%20a%20transferred%20arc%20in%20presence%20of%20an%20external%20magnetic%20field&rft.btitle=ICOPS%202000.%20IEEE%20Conference%20Record%20-%20Abstracts.%2027th%20IEEE%20International%20Conference%20on%20Plasma%20Science%20(Cat.%20No.00CH37087)&rft.au=Blais,%20A.&rft.date=2000&rft.spage=222&rft.pages=222-&rft.issn=0730-9244&rft.eissn=2576-7208&rft.isbn=0780359828&rft.isbn_list=9780780359826&rft_id=info:doi/10.1109/PLASMA.2000.855046&rft_dat=%3Cieee_6IE%3E855046%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=855046&rfr_iscdi=true |