Articulated-pose estimation using brightness- and depth-constancy constraints
This paper explores several approaches for articulated-pose estimation, assuming that video-rate depth information is available, from either stereo cameras or other sensors. We use these depth measurements in the traditional linear brightness constraint equation, as well as in a depth constraint equ...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores several approaches for articulated-pose estimation, assuming that video-rate depth information is available, from either stereo cameras or other sensors. We use these depth measurements in the traditional linear brightness constraint equation, as well as in a depth constraint equation. To capture the joint constraints, we combine the brightness and depth constraints with twist mathematics. We address several important issues in the formation of the constraint equations, including updating the body rotation matrix without using a first-order matrix approximation and removing the coupling between the rotation and translation updates. The resulting constraint equations are linear on a modified parameter set. After solving these linear constraints, there is a single closed-form non-linear transformation to return the updates to the original pose parameters. We show results for tracking body pose in oblique views of synthetic walking sequences and in moving-camera views of synthetic jumping-jack sequences. We also show results for tracking body pose in side views of a real walking sequence. |
---|---|
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2000.854875 |