Automatic recovery of relative camera rotations for urban scenes

In this paper we describe a formulation of extrinsic camera calibration that decouples rotation from translation by exploiting properties inherent in urban scenes. We then present an algorithm which uses edge features to robustly and accurately estimate relative rotations among multiple cameras give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Antone, M.E., Teller, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289 vol.2
container_issue
container_start_page 282
container_title
container_volume 2
creator Antone, M.E.
Teller, S.
description In this paper we describe a formulation of extrinsic camera calibration that decouples rotation from translation by exploiting properties inherent in urban scenes. We then present an algorithm which uses edge features to robustly and accurately estimate relative rotations among multiple cameras given intrinsic calibration and approximate initial pose. The algorithm is linear both in the number of images and the number of features. We estimate the number and directions of vanishing points (VPs) with respect to each camera using a hybrid approach that combines the robustness of the Hough transform with the accuracy of expectation maximization. Matching and labeling methods identify unique VPs and correspond them across all cameras. Finally, a technique akin to bundle adjustment produces globally optimal estimates of relative camera rotations by bringing all VPs into optimal alignment. Uncertainty is modeled and used at every stage to improve accuracy. We assess the algorithm's performance on both synthetic and real data, and compare our results to those of semi-automated photogrammetric methods for a large set of real hemispherical images, using several consistency and error metrics.
doi_str_mv 10.1109/CVPR.2000.854809
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_854809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>854809</ieee_id><sourcerecordid>27777964</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-af229d6a749efb330e79cc31be9339cbb583fdd9de6d96cf7b6b9cbe3effab8d3</originalsourceid><addsrcrecordid>eNotkEFLxDAQhQMquKy9i6ecvLWmTZt0bi5FV2FBEfVaknQClbZZk3Zh_72BOpc38-bjMQwhtznL8pzBQ_P9_pEVjLGsrsqawQVJQNZMCqiYEAW_JJucCZ4KyOGaJCH8RJbFHVRyQx53y-xGNfeGejTuhP5MnY39EL0TUqNG9Ip6N8fZTYFa5-nitZpoMDhhuCFXVg0Bk3_dkq_np8_mJT287V-b3SHtC8bnVNmigE4oWQJazTlDCcbwXCNwDkbrqua266BD0YEwVmqho40crVW67viW3K-5R-9-FwxzO_bxgmFQE7oltIWMBaKM4N0K9ojYHn0_Kn9u19_wPztJWZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27777964</pqid></control><display><type>conference_proceeding</type><title>Automatic recovery of relative camera rotations for urban scenes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Antone, M.E. ; Teller, S.</creator><creatorcontrib>Antone, M.E. ; Teller, S.</creatorcontrib><description>In this paper we describe a formulation of extrinsic camera calibration that decouples rotation from translation by exploiting properties inherent in urban scenes. We then present an algorithm which uses edge features to robustly and accurately estimate relative rotations among multiple cameras given intrinsic calibration and approximate initial pose. The algorithm is linear both in the number of images and the number of features. We estimate the number and directions of vanishing points (VPs) with respect to each camera using a hybrid approach that combines the robustness of the Hough transform with the accuracy of expectation maximization. Matching and labeling methods identify unique VPs and correspond them across all cameras. Finally, a technique akin to bundle adjustment produces globally optimal estimates of relative camera rotations by bringing all VPs into optimal alignment. Uncertainty is modeled and used at every stage to improve accuracy. We assess the algorithm's performance on both synthetic and real data, and compare our results to those of semi-automated photogrammetric methods for a large set of real hemispherical images, using several consistency and error metrics.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769506623</identifier><identifier>ISBN: 0769506623</identifier><identifier>DOI: 10.1109/CVPR.2000.854809</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; Computer graphics ; Computer science ; Image edge detection ; Labeling ; Laboratories ; Layout ; Parameter estimation ; Uncertainty</subject><ispartof>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, Vol.2, p.282-289 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/854809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/854809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Antone, M.E.</creatorcontrib><creatorcontrib>Teller, S.</creatorcontrib><title>Automatic recovery of relative camera rotations for urban scenes</title><title>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>In this paper we describe a formulation of extrinsic camera calibration that decouples rotation from translation by exploiting properties inherent in urban scenes. We then present an algorithm which uses edge features to robustly and accurately estimate relative rotations among multiple cameras given intrinsic calibration and approximate initial pose. The algorithm is linear both in the number of images and the number of features. We estimate the number and directions of vanishing points (VPs) with respect to each camera using a hybrid approach that combines the robustness of the Hough transform with the accuracy of expectation maximization. Matching and labeling methods identify unique VPs and correspond them across all cameras. Finally, a technique akin to bundle adjustment produces globally optimal estimates of relative camera rotations by bringing all VPs into optimal alignment. Uncertainty is modeled and used at every stage to improve accuracy. We assess the algorithm's performance on both synthetic and real data, and compare our results to those of semi-automated photogrammetric methods for a large set of real hemispherical images, using several consistency and error metrics.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Computer graphics</subject><subject>Computer science</subject><subject>Image edge detection</subject><subject>Labeling</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Parameter estimation</subject><subject>Uncertainty</subject><issn>1063-6919</issn><isbn>9780769506623</isbn><isbn>0769506623</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEFLxDAQhQMquKy9i6ecvLWmTZt0bi5FV2FBEfVaknQClbZZk3Zh_72BOpc38-bjMQwhtznL8pzBQ_P9_pEVjLGsrsqawQVJQNZMCqiYEAW_JJucCZ4KyOGaJCH8RJbFHVRyQx53y-xGNfeGejTuhP5MnY39EL0TUqNG9Ip6N8fZTYFa5-nitZpoMDhhuCFXVg0Bk3_dkq_np8_mJT287V-b3SHtC8bnVNmigE4oWQJazTlDCcbwXCNwDkbrqua266BD0YEwVmqho40crVW67viW3K-5R-9-FwxzO_bxgmFQE7oltIWMBaKM4N0K9ojYHn0_Kn9u19_wPztJWZk</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Antone, M.E.</creator><creator>Teller, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>Automatic recovery of relative camera rotations for urban scenes</title><author>Antone, M.E. ; Teller, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-af229d6a749efb330e79cc31be9339cbb583fdd9de6d96cf7b6b9cbe3effab8d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Computer graphics</topic><topic>Computer science</topic><topic>Image edge detection</topic><topic>Labeling</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Parameter estimation</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Antone, M.E.</creatorcontrib><creatorcontrib>Teller, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Antone, M.E.</au><au>Teller, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic recovery of relative camera rotations for urban scenes</atitle><btitle>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>282</spage><epage>289 vol.2</epage><pages>282-289 vol.2</pages><issn>1063-6919</issn><isbn>9780769506623</isbn><isbn>0769506623</isbn><abstract>In this paper we describe a formulation of extrinsic camera calibration that decouples rotation from translation by exploiting properties inherent in urban scenes. We then present an algorithm which uses edge features to robustly and accurately estimate relative rotations among multiple cameras given intrinsic calibration and approximate initial pose. The algorithm is linear both in the number of images and the number of features. We estimate the number and directions of vanishing points (VPs) with respect to each camera using a hybrid approach that combines the robustness of the Hough transform with the accuracy of expectation maximization. Matching and labeling methods identify unique VPs and correspond them across all cameras. Finally, a technique akin to bundle adjustment produces globally optimal estimates of relative camera rotations by bringing all VPs into optimal alignment. Uncertainty is modeled and used at every stage to improve accuracy. We assess the algorithm's performance on both synthetic and real data, and compare our results to those of semi-automated photogrammetric methods for a large set of real hemispherical images, using several consistency and error metrics.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2000.854809</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, Vol.2, p.282-289 vol.2
issn 1063-6919
language eng
recordid cdi_ieee_primary_854809
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calibration
Cameras
Computer graphics
Computer science
Image edge detection
Labeling
Laboratories
Layout
Parameter estimation
Uncertainty
title Automatic recovery of relative camera rotations for urban scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20recovery%20of%20relative%20camera%20rotations%20for%20urban%20scenes&rft.btitle=Proceedings%20-%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Antone,%20M.E.&rft.date=2000&rft.volume=2&rft.spage=282&rft.epage=289%20vol.2&rft.pages=282-289%20vol.2&rft.issn=1063-6919&rft.isbn=9780769506623&rft.isbn_list=0769506623&rft_id=info:doi/10.1109/CVPR.2000.854809&rft_dat=%3Cproquest_6IE%3E27777964%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27777964&rft_id=info:pmid/&rft_ieee_id=854809&rfr_iscdi=true