Memory access scheduling
The bandwidth and latency of a memory system are strongly dependent on the manner in which accesses interact with the "3-D" structure of banks, rows, and columns characteristic of contemporary DRAM chips. There is nearly an order of magnitude difference in bandwidth between successive refe...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | |
container_start_page | 128 |
container_title | |
container_volume | |
creator | Rixner, Scott Dally, William J. Kapasi, Ujval J. Mattson, Peter Owens, John D. |
description | The bandwidth and latency of a memory system are strongly dependent on the manner in which accesses interact with the "3-D" structure of banks, rows, and columns characteristic of contemporary DRAM chips. There is nearly an order of magnitude difference in bandwidth between successive references to different columns within a row and different rows within a bank. This paper introduces memory access scheduling, a technique that improves the performance of a memory system by reordering memory references to exploit locality within the 3-D memory structure. Conservative reordering, in which the first ready reference in a sequence is performed, improves bandwidth by 40% for traces from five media benchmarks. Aggressive reordering, in which operations are scheduled to optimize memory bandwidth, improves bandwidth by 93% for the same set of applications. Memory access scheduling is particularly important for media processors where it enables the processor to make the most efficient use of scarce memory bandwidth. |
doi_str_mv | 10.1145/339647.339668 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_854384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>854384</ieee_id><sourcerecordid>31298568</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-a0c9affb5a28e9d3aad32c27d2436f747e2e346c324960bdc8dcf30ecd120ab23</originalsourceid><addsrcrecordid>eNqNkDtPwzAURi0eEqF0REJMnZhIsX39uBlRVR5SEQtIbJZj30AgaUrcDv33tAoSK9M3fEdnOIydCz4VQukbgMIoO92PwQOWSW11bgW8HbJToVEIkCDxiGWCG8gNFvaEjVP65JzvPhQcM3bxRG3Xbyc-BEppksIHxU1TL9_P2HHlm0Tj3x2x17v5y-whXzzfP85uF7kH1Ovc81D4qiq1l0hFBO8jyCBtlApMZZUlSaBMAKkKw8sYMIYKOIUoJPelhBG7GryrvvveUFq7tk6BmsYvqdskB0IWqA3uwMsBrInIrfq69f3WoVaA6s_iQ-vKrvtKTnC3r-SGSm6otAOv_wW6sq-pgh-AlmGN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31298568</pqid></control><display><type>conference_proceeding</type><title>Memory access scheduling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rixner, Scott ; Dally, William J. ; Kapasi, Ujval J. ; Mattson, Peter ; Owens, John D.</creator><creatorcontrib>Rixner, Scott ; Dally, William J. ; Kapasi, Ujval J. ; Mattson, Peter ; Owens, John D.</creatorcontrib><description>The bandwidth and latency of a memory system are strongly dependent on the manner in which accesses interact with the "3-D" structure of banks, rows, and columns characteristic of contemporary DRAM chips. There is nearly an order of magnitude difference in bandwidth between successive references to different columns within a row and different rows within a bank. This paper introduces memory access scheduling, a technique that improves the performance of a memory system by reordering memory references to exploit locality within the 3-D memory structure. Conservative reordering, in which the first ready reference in a sequence is performed, improves bandwidth by 40% for traces from five media benchmarks. Aggressive reordering, in which operations are scheduled to optimize memory bandwidth, improves bandwidth by 93% for the same set of applications. Memory access scheduling is particularly important for media processors where it enables the processor to make the most efficient use of scarce memory bandwidth.</description><identifier>ISSN: 1063-6897</identifier><identifier>ISBN: 1581132328</identifier><identifier>ISBN: 9781581132328</identifier><identifier>EISSN: 2575-713X</identifier><identifier>DOI: 10.1145/339647.339668</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Arithmetic ; Bandwidth ; Delay ; Hardware -- Hardware validation ; Hardware -- Integrated circuits -- Semiconductor memory ; Laboratories ; Out of order ; Permission ; Pipeline processing ; Processor scheduling ; Random access memory ; Streaming media</subject><ispartof>International Symposium on Computer Architecture: Proceedings of the 27th annual international symposium on Computer architecture, 2000, p.128-138</ispartof><rights>2000 ACM</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-a0c9affb5a28e9d3aad32c27d2436f747e2e346c324960bdc8dcf30ecd120ab23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/854384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/854384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rixner, Scott</creatorcontrib><creatorcontrib>Dally, William J.</creatorcontrib><creatorcontrib>Kapasi, Ujval J.</creatorcontrib><creatorcontrib>Mattson, Peter</creatorcontrib><creatorcontrib>Owens, John D.</creatorcontrib><title>Memory access scheduling</title><title>International Symposium on Computer Architecture: Proceedings of the 27th annual international symposium on Computer architecture</title><addtitle>ISCA</addtitle><description>The bandwidth and latency of a memory system are strongly dependent on the manner in which accesses interact with the "3-D" structure of banks, rows, and columns characteristic of contemporary DRAM chips. There is nearly an order of magnitude difference in bandwidth between successive references to different columns within a row and different rows within a bank. This paper introduces memory access scheduling, a technique that improves the performance of a memory system by reordering memory references to exploit locality within the 3-D memory structure. Conservative reordering, in which the first ready reference in a sequence is performed, improves bandwidth by 40% for traces from five media benchmarks. Aggressive reordering, in which operations are scheduled to optimize memory bandwidth, improves bandwidth by 93% for the same set of applications. Memory access scheduling is particularly important for media processors where it enables the processor to make the most efficient use of scarce memory bandwidth.</description><subject>Arithmetic</subject><subject>Bandwidth</subject><subject>Delay</subject><subject>Hardware -- Hardware validation</subject><subject>Hardware -- Integrated circuits -- Semiconductor memory</subject><subject>Laboratories</subject><subject>Out of order</subject><subject>Permission</subject><subject>Pipeline processing</subject><subject>Processor scheduling</subject><subject>Random access memory</subject><subject>Streaming media</subject><issn>1063-6897</issn><issn>2575-713X</issn><isbn>1581132328</isbn><isbn>9781581132328</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkDtPwzAURi0eEqF0REJMnZhIsX39uBlRVR5SEQtIbJZj30AgaUrcDv33tAoSK9M3fEdnOIydCz4VQukbgMIoO92PwQOWSW11bgW8HbJToVEIkCDxiGWCG8gNFvaEjVP65JzvPhQcM3bxRG3Xbyc-BEppksIHxU1TL9_P2HHlm0Tj3x2x17v5y-whXzzfP85uF7kH1Ovc81D4qiq1l0hFBO8jyCBtlApMZZUlSaBMAKkKw8sYMIYKOIUoJPelhBG7GryrvvveUFq7tk6BmsYvqdskB0IWqA3uwMsBrInIrfq69f3WoVaA6s_iQ-vKrvtKTnC3r-SGSm6otAOv_wW6sq-pgh-AlmGN</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Rixner, Scott</creator><creator>Dally, William J.</creator><creator>Kapasi, Ujval J.</creator><creator>Mattson, Peter</creator><creator>Owens, John D.</creator><general>ACM</general><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000101</creationdate><title>Memory access scheduling</title><author>Rixner, Scott ; Dally, William J. ; Kapasi, Ujval J. ; Mattson, Peter ; Owens, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-a0c9affb5a28e9d3aad32c27d2436f747e2e346c324960bdc8dcf30ecd120ab23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Arithmetic</topic><topic>Bandwidth</topic><topic>Delay</topic><topic>Hardware -- Hardware validation</topic><topic>Hardware -- Integrated circuits -- Semiconductor memory</topic><topic>Laboratories</topic><topic>Out of order</topic><topic>Permission</topic><topic>Pipeline processing</topic><topic>Processor scheduling</topic><topic>Random access memory</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Rixner, Scott</creatorcontrib><creatorcontrib>Dally, William J.</creatorcontrib><creatorcontrib>Kapasi, Ujval J.</creatorcontrib><creatorcontrib>Mattson, Peter</creatorcontrib><creatorcontrib>Owens, John D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rixner, Scott</au><au>Dally, William J.</au><au>Kapasi, Ujval J.</au><au>Mattson, Peter</au><au>Owens, John D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Memory access scheduling</atitle><btitle>International Symposium on Computer Architecture: Proceedings of the 27th annual international symposium on Computer architecture</btitle><stitle>ISCA</stitle><date>2000-01-01</date><risdate>2000</risdate><spage>128</spage><epage>138</epage><pages>128-138</pages><issn>1063-6897</issn><eissn>2575-713X</eissn><isbn>1581132328</isbn><isbn>9781581132328</isbn><abstract>The bandwidth and latency of a memory system are strongly dependent on the manner in which accesses interact with the "3-D" structure of banks, rows, and columns characteristic of contemporary DRAM chips. There is nearly an order of magnitude difference in bandwidth between successive references to different columns within a row and different rows within a bank. This paper introduces memory access scheduling, a technique that improves the performance of a memory system by reordering memory references to exploit locality within the 3-D memory structure. Conservative reordering, in which the first ready reference in a sequence is performed, improves bandwidth by 40% for traces from five media benchmarks. Aggressive reordering, in which operations are scheduled to optimize memory bandwidth, improves bandwidth by 93% for the same set of applications. Memory access scheduling is particularly important for media processors where it enables the processor to make the most efficient use of scarce memory bandwidth.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/339647.339668</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6897 |
ispartof | International Symposium on Computer Architecture: Proceedings of the 27th annual international symposium on Computer architecture, 2000, p.128-138 |
issn | 1063-6897 2575-713X |
language | eng |
recordid | cdi_ieee_primary_854384 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arithmetic Bandwidth Delay Hardware -- Hardware validation Hardware -- Integrated circuits -- Semiconductor memory Laboratories Out of order Permission Pipeline processing Processor scheduling Random access memory Streaming media |
title | Memory access scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T04%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Memory%20access%20scheduling&rft.btitle=International%20Symposium%20on%20Computer%20Architecture:%20Proceedings%20of%20the%2027th%20annual%20international%20symposium%20on%20Computer%20architecture&rft.au=Rixner,%20Scott&rft.date=2000-01-01&rft.spage=128&rft.epage=138&rft.pages=128-138&rft.issn=1063-6897&rft.eissn=2575-713X&rft.isbn=1581132328&rft.isbn_list=9781581132328&rft_id=info:doi/10.1145/339647.339668&rft_dat=%3Cproquest_6IE%3E31298568%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31298568&rft_id=info:pmid/&rft_ieee_id=854384&rfr_iscdi=true |