Solving Multiobjective Constrained Trajectory Optimization Problem by an Extended Evolutionary Algorithm
Highly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2020-04, Vol.50 (4), p.1630-1643 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1643 |
---|---|
container_issue | 4 |
container_start_page | 1630 |
container_title | IEEE transactions on cybernetics |
container_volume | 50 |
creator | Chai, Runqi Savvaris, Al Tsourdos, Antonios Xia, Yuanqing Chai, Senchun |
description | Highly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives. To address the multiobjective trajectory planning problem, this paper applies a specific multiple-shooting discretization technique with the newest NSGA-III optimization algorithm and constructs a new evolutionary optimal control solver. In addition, three constraint handling algorithms are incorporated in this evolutionary optimal control framework. The performance of using different constraint handling strategies is detailed and analyzed. The proposed approach is compared with other well-developed multiobjective techniques. Experimental studies demonstrate that the present method can outperform other evolutionary-based solvers investigated in this paper with respect to convergence ability and distribution of the Pareto-optimal solutions. Therefore, the present evolutionary optimal control solver is more attractive and can offer an alternative for optimizing multiobjective continuous-time trajectory optimization problems. |
doi_str_mv | 10.1109/TCYB.2018.2881190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8543496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8543496</ieee_id><sourcerecordid>2368133743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3f420bc0488d98b4a954092251b5eacf15bf35f74908abd6c202cce89fbba7133</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoKtUfIIIMuHHTmtfMJMta6gMqFawLVyHJZDRlZlKTmWL99WZo7cJsEm6-c7j3HgAuEBwhBPntYvJ-N8IQsRFmDCEOD8ApRhkbYpynh_t3lp-A8xCWMB4WS5wdgxMCKeM4z0_B56ur1rb5SJ67qrVOLY1u7dokE9eE1kvbmCJZeNmXnd8k81Vra_sjI9okL96pytSJ2iSySabfrWmKiE_Xrup6QEbBuPpw3raf9Rk4KmUVzPnuHoC3--li8jiczR-eJuPZUBOO2yEpKYZKx_5YwZmikqcUcoxTpFIjdYlSVZK0zCmHTKoi0xhirQ3jpVIyR4QMwM3Wd-XdV2dCK2obtKkq2RjXBYER4SkjGaERvf6HLl3nm9idwCRj0SynvSHaUtq7ELwpxcrbOs4mEBR9EqJPQvRJiF0SUXO1c-5UbYq94m_vEbjcAtYYs_9mKSWUZ-QXwmSNyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368133743</pqid></control><display><type>article</type><title>Solving Multiobjective Constrained Trajectory Optimization Problem by an Extended Evolutionary Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Chai, Runqi ; Savvaris, Al ; Tsourdos, Antonios ; Xia, Yuanqing ; Chai, Senchun</creator><creatorcontrib>Chai, Runqi ; Savvaris, Al ; Tsourdos, Antonios ; Xia, Yuanqing ; Chai, Senchun</creatorcontrib><description>Highly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives. To address the multiobjective trajectory planning problem, this paper applies a specific multiple-shooting discretization technique with the newest NSGA-III optimization algorithm and constructs a new evolutionary optimal control solver. In addition, three constraint handling algorithms are incorporated in this evolutionary optimal control framework. The performance of using different constraint handling strategies is detailed and analyzed. The proposed approach is compared with other well-developed multiobjective techniques. Experimental studies demonstrate that the present method can outperform other evolutionary-based solvers investigated in this paper with respect to convergence ability and distribution of the Pareto-optimal solutions. Therefore, the present evolutionary optimal control solver is more attractive and can offer an alternative for optimizing multiobjective continuous-time trajectory optimization problems.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2018.2881190</identifier><identifier>PMID: 30489277</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Constraints ; Evolutionary algorithms ; Multiobjective optimal control ; Multiple objective analysis ; multiple-shooting ; NSGA-III optimization ; Optimal control ; Optimization ; Pareto-optimal ; Planning ; Solvers ; Space vehicles ; Trajectory optimization ; Trajectory planning ; Vehicle dynamics</subject><ispartof>IEEE transactions on cybernetics, 2020-04, Vol.50 (4), p.1630-1643</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3f420bc0488d98b4a954092251b5eacf15bf35f74908abd6c202cce89fbba7133</citedby><cites>FETCH-LOGICAL-c392t-3f420bc0488d98b4a954092251b5eacf15bf35f74908abd6c202cce89fbba7133</cites><orcidid>0000-0003-1910-1795 ; 0000-0003-4083-8863 ; 0000-0002-5977-4911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8543496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8543496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30489277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chai, Runqi</creatorcontrib><creatorcontrib>Savvaris, Al</creatorcontrib><creatorcontrib>Tsourdos, Antonios</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><creatorcontrib>Chai, Senchun</creatorcontrib><title>Solving Multiobjective Constrained Trajectory Optimization Problem by an Extended Evolutionary Algorithm</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Highly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives. To address the multiobjective trajectory planning problem, this paper applies a specific multiple-shooting discretization technique with the newest NSGA-III optimization algorithm and constructs a new evolutionary optimal control solver. In addition, three constraint handling algorithms are incorporated in this evolutionary optimal control framework. The performance of using different constraint handling strategies is detailed and analyzed. The proposed approach is compared with other well-developed multiobjective techniques. Experimental studies demonstrate that the present method can outperform other evolutionary-based solvers investigated in this paper with respect to convergence ability and distribution of the Pareto-optimal solutions. Therefore, the present evolutionary optimal control solver is more attractive and can offer an alternative for optimizing multiobjective continuous-time trajectory optimization problems.</description><subject>Constraints</subject><subject>Evolutionary algorithms</subject><subject>Multiobjective optimal control</subject><subject>Multiple objective analysis</subject><subject>multiple-shooting</subject><subject>NSGA-III optimization</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Pareto-optimal</subject><subject>Planning</subject><subject>Solvers</subject><subject>Space vehicles</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><subject>Vehicle dynamics</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtLAzEUhYMoKtUfIIIMuHHTmtfMJMta6gMqFawLVyHJZDRlZlKTmWL99WZo7cJsEm6-c7j3HgAuEBwhBPntYvJ-N8IQsRFmDCEOD8ApRhkbYpynh_t3lp-A8xCWMB4WS5wdgxMCKeM4z0_B56ur1rb5SJ67qrVOLY1u7dokE9eE1kvbmCJZeNmXnd8k81Vra_sjI9okL96pytSJ2iSySabfrWmKiE_Xrup6QEbBuPpw3raf9Rk4KmUVzPnuHoC3--li8jiczR-eJuPZUBOO2yEpKYZKx_5YwZmikqcUcoxTpFIjdYlSVZK0zCmHTKoi0xhirQ3jpVIyR4QMwM3Wd-XdV2dCK2obtKkq2RjXBYER4SkjGaERvf6HLl3nm9idwCRj0SynvSHaUtq7ELwpxcrbOs4mEBR9EqJPQvRJiF0SUXO1c-5UbYq94m_vEbjcAtYYs_9mKSWUZ-QXwmSNyg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Chai, Runqi</creator><creator>Savvaris, Al</creator><creator>Tsourdos, Antonios</creator><creator>Xia, Yuanqing</creator><creator>Chai, Senchun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1910-1795</orcidid><orcidid>https://orcid.org/0000-0003-4083-8863</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid></search><sort><creationdate>20200401</creationdate><title>Solving Multiobjective Constrained Trajectory Optimization Problem by an Extended Evolutionary Algorithm</title><author>Chai, Runqi ; Savvaris, Al ; Tsourdos, Antonios ; Xia, Yuanqing ; Chai, Senchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3f420bc0488d98b4a954092251b5eacf15bf35f74908abd6c202cce89fbba7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Constraints</topic><topic>Evolutionary algorithms</topic><topic>Multiobjective optimal control</topic><topic>Multiple objective analysis</topic><topic>multiple-shooting</topic><topic>NSGA-III optimization</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Pareto-optimal</topic><topic>Planning</topic><topic>Solvers</topic><topic>Space vehicles</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Runqi</creatorcontrib><creatorcontrib>Savvaris, Al</creatorcontrib><creatorcontrib>Tsourdos, Antonios</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><creatorcontrib>Chai, Senchun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chai, Runqi</au><au>Savvaris, Al</au><au>Tsourdos, Antonios</au><au>Xia, Yuanqing</au><au>Chai, Senchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Multiobjective Constrained Trajectory Optimization Problem by an Extended Evolutionary Algorithm</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>50</volume><issue>4</issue><spage>1630</spage><epage>1643</epage><pages>1630-1643</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Highly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives. To address the multiobjective trajectory planning problem, this paper applies a specific multiple-shooting discretization technique with the newest NSGA-III optimization algorithm and constructs a new evolutionary optimal control solver. In addition, three constraint handling algorithms are incorporated in this evolutionary optimal control framework. The performance of using different constraint handling strategies is detailed and analyzed. The proposed approach is compared with other well-developed multiobjective techniques. Experimental studies demonstrate that the present method can outperform other evolutionary-based solvers investigated in this paper with respect to convergence ability and distribution of the Pareto-optimal solutions. Therefore, the present evolutionary optimal control solver is more attractive and can offer an alternative for optimizing multiobjective continuous-time trajectory optimization problems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30489277</pmid><doi>10.1109/TCYB.2018.2881190</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1910-1795</orcidid><orcidid>https://orcid.org/0000-0003-4083-8863</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2020-04, Vol.50 (4), p.1630-1643 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_8543496 |
source | IEEE Electronic Library (IEL) |
subjects | Constraints Evolutionary algorithms Multiobjective optimal control Multiple objective analysis multiple-shooting NSGA-III optimization Optimal control Optimization Pareto-optimal Planning Solvers Space vehicles Trajectory optimization Trajectory planning Vehicle dynamics |
title | Solving Multiobjective Constrained Trajectory Optimization Problem by an Extended Evolutionary Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Multiobjective%20Constrained%20Trajectory%20Optimization%20Problem%20by%20an%20Extended%20Evolutionary%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Chai,%20Runqi&rft.date=2020-04-01&rft.volume=50&rft.issue=4&rft.spage=1630&rft.epage=1643&rft.pages=1630-1643&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2018.2881190&rft_dat=%3Cproquest_RIE%3E2368133743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368133743&rft_id=info:pmid/30489277&rft_ieee_id=8543496&rfr_iscdi=true |