Decentralized Online Learning Methods Based on Weight-Balancing Over Time-Varying Digraphs

This paper considers decentralized online optimization problems over a graph, where the allocated objective function of each agent is revealed over time and is only known for the corresponding agent in hindsight. Moreover, the graph is directed and time varying. In order to solve the problem, a dece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computational intelligence 2021-06, Vol.5 (3), p.394-406
Hauptverfasser: Xu, Changqiao, Zhu, Junlong, Wu, Dapeng Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 3
container_start_page 394
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 5
creator Xu, Changqiao
Zhu, Junlong
Wu, Dapeng Oliver
description This paper considers decentralized online optimization problems over a graph, where the allocated objective function of each agent is revealed over time and is only known for the corresponding agent in hindsight. Moreover, the graph is directed and time varying. In order to solve the problem, a decentralized stochastic subgradient online learning method is proposed over time-varying digraphs. However, the directed graph could generate an asymmetric weight matrix, which is not doubly stochastic matrix. To overcome this difficulty, we employ a weight-balancing technique. By choosing appropriate learning rates, we show that our proposed method can achieve logarithmic regret under strong convexity. Moreover, under convexity, the square-root regret can also be achieved. In addition, numerical simulations in sensor networks for solving the online distributed estimation problem illustrate the theoretical results.
doi_str_mv 10.1109/TETCI.2018.2880771
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8543490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8543490</ieee_id><sourcerecordid>2532300709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5a54567e6d13006e481e6c033a23ac3c4462165b4b2f6ab0001e5be8befb56fe3</originalsourceid><addsrcrecordid>eNpNkFtPwkAQhTdGEwnyB_Slic_FvXf7KOCFBMMLXuLLZlumsKRscbeY6K93K8T4NJOZc2ZOPoQuCR4SgvObxd1iPB1STNSQKoWzjJygHuUZSakSb6f_-nM0CGGDMaa5IEzwHnqfQAmu9aa237BM5q62DpIZGO-sWyVP0K6bZUhGJsRt45JXsKt1m45MbVzZKeaf4JOF3UL6YvxXN5nYlTe7dbhAZ5WpAwyOtY-e72PSx3Q2f5iOb2dpSXPSpsIILmQGckkYxhK4IiBLzJihzJSs5FxSIkXBC1pJU8TwBEQBqoCqELIC1kfXh7s733zsIbR60-y9iy81FYzGoxnOo4oeVKVvQvBQ6Z232xhZE6w7jPoXo-4w6iPGaLo6mCwA_BmU4IznmP0AjXtt9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532300709</pqid></control><display><type>article</type><title>Decentralized Online Learning Methods Based on Weight-Balancing Over Time-Varying Digraphs</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Changqiao ; Zhu, Junlong ; Wu, Dapeng Oliver</creator><creatorcontrib>Xu, Changqiao ; Zhu, Junlong ; Wu, Dapeng Oliver</creatorcontrib><description>This paper considers decentralized online optimization problems over a graph, where the allocated objective function of each agent is revealed over time and is only known for the corresponding agent in hindsight. Moreover, the graph is directed and time varying. In order to solve the problem, a decentralized stochastic subgradient online learning method is proposed over time-varying digraphs. However, the directed graph could generate an asymmetric weight matrix, which is not doubly stochastic matrix. To overcome this difficulty, we employ a weight-balancing technique. By choosing appropriate learning rates, we show that our proposed method can achieve logarithmic regret under strong convexity. Moreover, under convexity, the square-root regret can also be achieved. In addition, numerical simulations in sensor networks for solving the online distributed estimation problem illustrate the theoretical results.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2018.2880771</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Balancing ; Convex functions ; Convexity ; Cost function ; Decentralized online optimization ; Distance learning ; Estimation ; Graph theory ; Heuristic algorithms ; Learning systems ; Noise measurement ; online algorithm ; Optimization ; regret ; Teaching methods ; time-varying digraphs ; Weight</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2021-06, Vol.5 (3), p.394-406</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5a54567e6d13006e481e6c033a23ac3c4462165b4b2f6ab0001e5be8befb56fe3</citedby><cites>FETCH-LOGICAL-c291t-5a54567e6d13006e481e6c033a23ac3c4462165b4b2f6ab0001e5be8befb56fe3</cites><orcidid>0000-0003-1467-1086 ; 0000-0003-1755-0183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8543490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8543490$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Changqiao</creatorcontrib><creatorcontrib>Zhu, Junlong</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><title>Decentralized Online Learning Methods Based on Weight-Balancing Over Time-Varying Digraphs</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>This paper considers decentralized online optimization problems over a graph, where the allocated objective function of each agent is revealed over time and is only known for the corresponding agent in hindsight. Moreover, the graph is directed and time varying. In order to solve the problem, a decentralized stochastic subgradient online learning method is proposed over time-varying digraphs. However, the directed graph could generate an asymmetric weight matrix, which is not doubly stochastic matrix. To overcome this difficulty, we employ a weight-balancing technique. By choosing appropriate learning rates, we show that our proposed method can achieve logarithmic regret under strong convexity. Moreover, under convexity, the square-root regret can also be achieved. In addition, numerical simulations in sensor networks for solving the online distributed estimation problem illustrate the theoretical results.</description><subject>Balancing</subject><subject>Convex functions</subject><subject>Convexity</subject><subject>Cost function</subject><subject>Decentralized online optimization</subject><subject>Distance learning</subject><subject>Estimation</subject><subject>Graph theory</subject><subject>Heuristic algorithms</subject><subject>Learning systems</subject><subject>Noise measurement</subject><subject>online algorithm</subject><subject>Optimization</subject><subject>regret</subject><subject>Teaching methods</subject><subject>time-varying digraphs</subject><subject>Weight</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtPwkAQhTdGEwnyB_Slic_FvXf7KOCFBMMLXuLLZlumsKRscbeY6K93K8T4NJOZc2ZOPoQuCR4SgvObxd1iPB1STNSQKoWzjJygHuUZSakSb6f_-nM0CGGDMaa5IEzwHnqfQAmu9aa237BM5q62DpIZGO-sWyVP0K6bZUhGJsRt45JXsKt1m45MbVzZKeaf4JOF3UL6YvxXN5nYlTe7dbhAZ5WpAwyOtY-e72PSx3Q2f5iOb2dpSXPSpsIILmQGckkYxhK4IiBLzJihzJSs5FxSIkXBC1pJU8TwBEQBqoCqELIC1kfXh7s733zsIbR60-y9iy81FYzGoxnOo4oeVKVvQvBQ6Z232xhZE6w7jPoXo-4w6iPGaLo6mCwA_BmU4IznmP0AjXtt9A</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Xu, Changqiao</creator><creator>Zhu, Junlong</creator><creator>Wu, Dapeng Oliver</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1467-1086</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid></search><sort><creationdate>20210601</creationdate><title>Decentralized Online Learning Methods Based on Weight-Balancing Over Time-Varying Digraphs</title><author>Xu, Changqiao ; Zhu, Junlong ; Wu, Dapeng Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5a54567e6d13006e481e6c033a23ac3c4462165b4b2f6ab0001e5be8befb56fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Balancing</topic><topic>Convex functions</topic><topic>Convexity</topic><topic>Cost function</topic><topic>Decentralized online optimization</topic><topic>Distance learning</topic><topic>Estimation</topic><topic>Graph theory</topic><topic>Heuristic algorithms</topic><topic>Learning systems</topic><topic>Noise measurement</topic><topic>online algorithm</topic><topic>Optimization</topic><topic>regret</topic><topic>Teaching methods</topic><topic>time-varying digraphs</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Changqiao</creatorcontrib><creatorcontrib>Zhu, Junlong</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Changqiao</au><au>Zhu, Junlong</au><au>Wu, Dapeng Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Online Learning Methods Based on Weight-Balancing Over Time-Varying Digraphs</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>5</volume><issue>3</issue><spage>394</spage><epage>406</epage><pages>394-406</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>This paper considers decentralized online optimization problems over a graph, where the allocated objective function of each agent is revealed over time and is only known for the corresponding agent in hindsight. Moreover, the graph is directed and time varying. In order to solve the problem, a decentralized stochastic subgradient online learning method is proposed over time-varying digraphs. However, the directed graph could generate an asymmetric weight matrix, which is not doubly stochastic matrix. To overcome this difficulty, we employ a weight-balancing technique. By choosing appropriate learning rates, we show that our proposed method can achieve logarithmic regret under strong convexity. Moreover, under convexity, the square-root regret can also be achieved. In addition, numerical simulations in sensor networks for solving the online distributed estimation problem illustrate the theoretical results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2018.2880771</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1467-1086</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2021-06, Vol.5 (3), p.394-406
issn 2471-285X
2471-285X
language eng
recordid cdi_ieee_primary_8543490
source IEEE Electronic Library (IEL)
subjects Balancing
Convex functions
Convexity
Cost function
Decentralized online optimization
Distance learning
Estimation
Graph theory
Heuristic algorithms
Learning systems
Noise measurement
online algorithm
Optimization
regret
Teaching methods
time-varying digraphs
Weight
title Decentralized Online Learning Methods Based on Weight-Balancing Over Time-Varying Digraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Online%20Learning%20Methods%20Based%20on%20Weight-Balancing%20Over%20Time-Varying%20Digraphs&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Xu,%20Changqiao&rft.date=2021-06-01&rft.volume=5&rft.issue=3&rft.spage=394&rft.epage=406&rft.pages=394-406&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2018.2880771&rft_dat=%3Cproquest_RIE%3E2532300709%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532300709&rft_id=info:pmid/&rft_ieee_id=8543490&rfr_iscdi=true