Service-Aware Cloud-to-Cloud Migration of Multiple Virtual Machines
Cloud-to-Cloud (C2C) migration enables the organizations to switch among various cloud environments without rebuilding the whole system on another cloud. Numerous virtual machines (VMs) placed in one cloud-computing environment during the C2C migration are moved to another. Service running on the mu...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018, Vol.6, p.76663-76672 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76672 |
---|---|
container_issue | |
container_start_page | 76663 |
container_title | IEEE access |
container_volume | 6 |
creator | Narantuya, Jargalsaikhan Zang, Hannie Lim, Hyuk |
description | Cloud-to-Cloud (C2C) migration enables the organizations to switch among various cloud environments without rebuilding the whole system on another cloud. Numerous virtual machines (VMs) placed in one cloud-computing environment during the C2C migration are moved to another. Service running on the multiple VMs becomes unavailable during the C2C migration because the conventional migration schemes stop the VMs for a while. The migration cost due to the increased downtime of the service deployed on the VMs may be increased by inappropriate C2C migration operation. We propose a service-aware strategy for C2C migration of services on multiple VMs, which analyzes the dependency of multiple VMs, using network traffic intensity to determine the migration sequence of dependent VMs in order to decrease the service downtime. We implement the proposed migration method in an OpenStackbased testbed environment. Our experimental results illustrate that the dependency among the VMs is successfully identified for C2C migration. The proposed method that exploits the dependency among the VMs significantly reduces the service downtime, while the service downtime increases exponentially, when the VMs are migrated randomly. In comparison with the random VM migration, the proposed scheme reduced the average service downtime by over 50% during the C2C migration. |
doi_str_mv | 10.1109/ACCESS.2018.2882651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8542661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8542661</ieee_id><doaj_id>oai_doaj_org_article_b7ca153c7de0421aaef572c9c4692446</doaj_id><sourcerecordid>2455892527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c5861e03bb0a2808055aacb9e78ff79b1f5cf60d52ce34368af22e1f03faf0273</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-5HdrM5llC10OKh6nV52bytW2K3bhLFf2_alOK7vGF4M_OYKJpSMqOU5A_zolhsNjNGqJoxpZgU9CoaMSrzhAsur__h22jSNDvSj-opkY2iYoPh2xlM5j8QMC5q31VJ65MTiNduG6B1fh97G6-7unWHGuN3F9oO6ngN5sPtsbmLbizUDU7Oexy9PS5ei-dk9fK0LOarxKREtYkRSlIkvCwJMEUUEQLAlDlmytosL6kVxkpSCWaQp1wqsIwhtYRbsIRlfBwtB9_Kw04fgvuE8Ks9OH0ifNhqCK0zNeoyM0AFN1mFJGUUAK3ImMlNKnOWprL3uh-8DsF_ddi0eue7sO_f1ywVQuVMnBL5cGWCb5qA9pJKiT6Wr4fy9bF8fS6_V00HlUPEi0KJlElJ-R9pVn8D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455892527</pqid></control><display><type>article</type><title>Service-Aware Cloud-to-Cloud Migration of Multiple Virtual Machines</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Narantuya, Jargalsaikhan ; Zang, Hannie ; Lim, Hyuk</creator><creatorcontrib>Narantuya, Jargalsaikhan ; Zang, Hannie ; Lim, Hyuk</creatorcontrib><description>Cloud-to-Cloud (C2C) migration enables the organizations to switch among various cloud environments without rebuilding the whole system on another cloud. Numerous virtual machines (VMs) placed in one cloud-computing environment during the C2C migration are moved to another. Service running on the multiple VMs becomes unavailable during the C2C migration because the conventional migration schemes stop the VMs for a while. The migration cost due to the increased downtime of the service deployed on the VMs may be increased by inappropriate C2C migration operation. We propose a service-aware strategy for C2C migration of services on multiple VMs, which analyzes the dependency of multiple VMs, using network traffic intensity to determine the migration sequence of dependent VMs in order to decrease the service downtime. We implement the proposed migration method in an OpenStackbased testbed environment. Our experimental results illustrate that the dependency among the VMs is successfully identified for C2C migration. The proposed method that exploits the dependency among the VMs significantly reduces the service downtime, while the service downtime increases exponentially, when the VMs are migrated randomly. In comparison with the random VM migration, the proposed scheme reduced the average service downtime by over 50% during the C2C migration.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2882651</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; cloud-to-cloud migration ; Communications traffic ; Computer architecture ; Data centers ; Delays ; Dependence ; dependency analysis ; Downtime ; multiple virtual machines ; Processor scheduling ; service downtime ; Task analysis ; Virtual environments ; Virtual machining</subject><ispartof>IEEE access, 2018, Vol.6, p.76663-76672</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c5861e03bb0a2808055aacb9e78ff79b1f5cf60d52ce34368af22e1f03faf0273</citedby><cites>FETCH-LOGICAL-c408t-c5861e03bb0a2808055aacb9e78ff79b1f5cf60d52ce34368af22e1f03faf0273</cites><orcidid>0000-0002-9926-3913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8542661$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Narantuya, Jargalsaikhan</creatorcontrib><creatorcontrib>Zang, Hannie</creatorcontrib><creatorcontrib>Lim, Hyuk</creatorcontrib><title>Service-Aware Cloud-to-Cloud Migration of Multiple Virtual Machines</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cloud-to-Cloud (C2C) migration enables the organizations to switch among various cloud environments without rebuilding the whole system on another cloud. Numerous virtual machines (VMs) placed in one cloud-computing environment during the C2C migration are moved to another. Service running on the multiple VMs becomes unavailable during the C2C migration because the conventional migration schemes stop the VMs for a while. The migration cost due to the increased downtime of the service deployed on the VMs may be increased by inappropriate C2C migration operation. We propose a service-aware strategy for C2C migration of services on multiple VMs, which analyzes the dependency of multiple VMs, using network traffic intensity to determine the migration sequence of dependent VMs in order to decrease the service downtime. We implement the proposed migration method in an OpenStackbased testbed environment. Our experimental results illustrate that the dependency among the VMs is successfully identified for C2C migration. The proposed method that exploits the dependency among the VMs significantly reduces the service downtime, while the service downtime increases exponentially, when the VMs are migrated randomly. In comparison with the random VM migration, the proposed scheme reduced the average service downtime by over 50% during the C2C migration.</description><subject>Cloud computing</subject><subject>cloud-to-cloud migration</subject><subject>Communications traffic</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Delays</subject><subject>Dependence</subject><subject>dependency analysis</subject><subject>Downtime</subject><subject>multiple virtual machines</subject><subject>Processor scheduling</subject><subject>service downtime</subject><subject>Task analysis</subject><subject>Virtual environments</subject><subject>Virtual machining</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-5HdrM5llC10OKh6nV52bytW2K3bhLFf2_alOK7vGF4M_OYKJpSMqOU5A_zolhsNjNGqJoxpZgU9CoaMSrzhAsur__h22jSNDvSj-opkY2iYoPh2xlM5j8QMC5q31VJ65MTiNduG6B1fh97G6-7unWHGuN3F9oO6ngN5sPtsbmLbizUDU7Oexy9PS5ei-dk9fK0LOarxKREtYkRSlIkvCwJMEUUEQLAlDlmytosL6kVxkpSCWaQp1wqsIwhtYRbsIRlfBwtB9_Kw04fgvuE8Ks9OH0ifNhqCK0zNeoyM0AFN1mFJGUUAK3ImMlNKnOWprL3uh-8DsF_ddi0eue7sO_f1ywVQuVMnBL5cGWCb5qA9pJKiT6Wr4fy9bF8fS6_V00HlUPEi0KJlElJ-R9pVn8D</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Narantuya, Jargalsaikhan</creator><creator>Zang, Hannie</creator><creator>Lim, Hyuk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9926-3913</orcidid></search><sort><creationdate>2018</creationdate><title>Service-Aware Cloud-to-Cloud Migration of Multiple Virtual Machines</title><author>Narantuya, Jargalsaikhan ; Zang, Hannie ; Lim, Hyuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c5861e03bb0a2808055aacb9e78ff79b1f5cf60d52ce34368af22e1f03faf0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cloud computing</topic><topic>cloud-to-cloud migration</topic><topic>Communications traffic</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Delays</topic><topic>Dependence</topic><topic>dependency analysis</topic><topic>Downtime</topic><topic>multiple virtual machines</topic><topic>Processor scheduling</topic><topic>service downtime</topic><topic>Task analysis</topic><topic>Virtual environments</topic><topic>Virtual machining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narantuya, Jargalsaikhan</creatorcontrib><creatorcontrib>Zang, Hannie</creatorcontrib><creatorcontrib>Lim, Hyuk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narantuya, Jargalsaikhan</au><au>Zang, Hannie</au><au>Lim, Hyuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Service-Aware Cloud-to-Cloud Migration of Multiple Virtual Machines</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>76663</spage><epage>76672</epage><pages>76663-76672</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cloud-to-Cloud (C2C) migration enables the organizations to switch among various cloud environments without rebuilding the whole system on another cloud. Numerous virtual machines (VMs) placed in one cloud-computing environment during the C2C migration are moved to another. Service running on the multiple VMs becomes unavailable during the C2C migration because the conventional migration schemes stop the VMs for a while. The migration cost due to the increased downtime of the service deployed on the VMs may be increased by inappropriate C2C migration operation. We propose a service-aware strategy for C2C migration of services on multiple VMs, which analyzes the dependency of multiple VMs, using network traffic intensity to determine the migration sequence of dependent VMs in order to decrease the service downtime. We implement the proposed migration method in an OpenStackbased testbed environment. Our experimental results illustrate that the dependency among the VMs is successfully identified for C2C migration. The proposed method that exploits the dependency among the VMs significantly reduces the service downtime, while the service downtime increases exponentially, when the VMs are migrated randomly. In comparison with the random VM migration, the proposed scheme reduced the average service downtime by over 50% during the C2C migration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2882651</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9926-3913</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018, Vol.6, p.76663-76672 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8542661 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Cloud computing cloud-to-cloud migration Communications traffic Computer architecture Data centers Delays Dependence dependency analysis Downtime multiple virtual machines Processor scheduling service downtime Task analysis Virtual environments Virtual machining |
title | Service-Aware Cloud-to-Cloud Migration of Multiple Virtual Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Service-Aware%20Cloud-to-Cloud%20Migration%20of%20Multiple%20Virtual%20Machines&rft.jtitle=IEEE%20access&rft.au=Narantuya,%20Jargalsaikhan&rft.date=2018&rft.volume=6&rft.spage=76663&rft.epage=76672&rft.pages=76663-76672&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2882651&rft_dat=%3Cproquest_ieee_%3E2455892527%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455892527&rft_id=info:pmid/&rft_ieee_id=8542661&rft_doaj_id=oai_doaj_org_article_b7ca153c7de0421aaef572c9c4692446&rfr_iscdi=true |