Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz
The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we condu...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.76516-76526 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76526 |
---|---|
container_issue | |
container_start_page | 76516 |
container_title | IEEE access |
container_volume | 6 |
creator | Zhang, Guojin Saito, Kentaro Fan, Wei Cai, Xuesong Hanpinitsak, Panawit Takada, Jun-Ichi Pedersen, Gert Frolund |
description | The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated. |
doi_str_mv | 10.1109/ACCESS.2018.2882644 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8542660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8542660</ieee_id><doaj_id>oai_doaj_org_article_1919a98f9bf14e23a88fcdc54d6af4f1</doaj_id><sourcerecordid>2455897617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaLgov4CLwXPXTv5zlHKui6sKKwfxzCbJtqlNmtaRffXG62Ic5nhzXtvEl6WnUI5BSj1-UVVzVarKSlBTYlSRDC2l00ICF1QTsX-v_kwO-n7TZlKJYjLSfYw-9i62Ly4bsA2r54xoh0SsMOhCV0efH7dtG3aJ7B4xHeXL7o6hJjfxrDFp5GVZF3n2j7HIScqn1_tjrMDj23vTn77UXZ_OburrorlzXxRXSwLy0ENhZXoea2pJFIopb0slQWQkiGQkoC2NSBRfk2spdqDX3PrlPRU67UjTDB6lC1G3zrgxmzTRzB-moCN-QFCfDIYh8a2zoAGjVp5vfbAHKGolLe15awW6JmH5HU2em1jeH1z_WA24S126fmGMM6VlgJkYtGRZWPo--j831UozXceZszDfOdhfvNIqtNR1Tjn_hSKMyJESb8AshmF7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455897617</pqid></control><display><type>article</type><title>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Guojin ; Saito, Kentaro ; Fan, Wei ; Cai, Xuesong ; Hanpinitsak, Panawit ; Takada, Jun-Ichi ; Pedersen, Gert Frolund</creator><creatorcontrib>Zhang, Guojin ; Saito, Kentaro ; Fan, Wei ; Cai, Xuesong ; Hanpinitsak, Panawit ; Takada, Jun-Ichi ; Pedersen, Gert Frolund</creatorcontrib><description>The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2882644</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; angular spread ; Antenna measurements ; Azimuth ; channel sounding ; Decay factor ; delay spread ; Delays ; Elevation angle ; Frequencies ; Frequency measurement ; LOS power ratio ; Millimeter wave propagation ; Millimeter waves ; millimeter-wave ; Parameter estimation ; Performance evaluation ; Propagation ; Spherical waves ; Systems design ; Transmitting antennas ; Wave propagation ; Wireless communication</subject><ispartof>IEEE access, 2018-01, Vol.6, p.76516-76526</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</citedby><cites>FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</cites><orcidid>0000-0002-9835-4485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8542660$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Guojin</creatorcontrib><creatorcontrib>Saito, Kentaro</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Cai, Xuesong</creatorcontrib><creatorcontrib>Hanpinitsak, Panawit</creatorcontrib><creatorcontrib>Takada, Jun-Ichi</creatorcontrib><creatorcontrib>Pedersen, Gert Frolund</creatorcontrib><title>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</title><title>IEEE access</title><addtitle>Access</addtitle><description>The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.</description><subject>Algorithms</subject><subject>angular spread</subject><subject>Antenna measurements</subject><subject>Azimuth</subject><subject>channel sounding</subject><subject>Decay factor</subject><subject>delay spread</subject><subject>Delays</subject><subject>Elevation angle</subject><subject>Frequencies</subject><subject>Frequency measurement</subject><subject>LOS power ratio</subject><subject>Millimeter wave propagation</subject><subject>Millimeter waves</subject><subject>millimeter-wave</subject><subject>Parameter estimation</subject><subject>Performance evaluation</subject><subject>Propagation</subject><subject>Spherical waves</subject><subject>Systems design</subject><subject>Transmitting antennas</subject><subject>Wave propagation</subject><subject>Wireless communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaLgov4CLwXPXTv5zlHKui6sKKwfxzCbJtqlNmtaRffXG62Ic5nhzXtvEl6WnUI5BSj1-UVVzVarKSlBTYlSRDC2l00ICF1QTsX-v_kwO-n7TZlKJYjLSfYw-9i62Ly4bsA2r54xoh0SsMOhCV0efH7dtG3aJ7B4xHeXL7o6hJjfxrDFp5GVZF3n2j7HIScqn1_tjrMDj23vTn77UXZ_OburrorlzXxRXSwLy0ENhZXoea2pJFIopb0slQWQkiGQkoC2NSBRfk2spdqDX3PrlPRU67UjTDB6lC1G3zrgxmzTRzB-moCN-QFCfDIYh8a2zoAGjVp5vfbAHKGolLe15awW6JmH5HU2em1jeH1z_WA24S126fmGMM6VlgJkYtGRZWPo--j831UozXceZszDfOdhfvNIqtNR1Tjn_hSKMyJESb8AshmF7A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Guojin</creator><creator>Saito, Kentaro</creator><creator>Fan, Wei</creator><creator>Cai, Xuesong</creator><creator>Hanpinitsak, Panawit</creator><creator>Takada, Jun-Ichi</creator><creator>Pedersen, Gert Frolund</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9835-4485</orcidid></search><sort><creationdate>20180101</creationdate><title>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</title><author>Zhang, Guojin ; Saito, Kentaro ; Fan, Wei ; Cai, Xuesong ; Hanpinitsak, Panawit ; Takada, Jun-Ichi ; Pedersen, Gert Frolund</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>angular spread</topic><topic>Antenna measurements</topic><topic>Azimuth</topic><topic>channel sounding</topic><topic>Decay factor</topic><topic>delay spread</topic><topic>Delays</topic><topic>Elevation angle</topic><topic>Frequencies</topic><topic>Frequency measurement</topic><topic>LOS power ratio</topic><topic>Millimeter wave propagation</topic><topic>Millimeter waves</topic><topic>millimeter-wave</topic><topic>Parameter estimation</topic><topic>Performance evaluation</topic><topic>Propagation</topic><topic>Spherical waves</topic><topic>Systems design</topic><topic>Transmitting antennas</topic><topic>Wave propagation</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guojin</creatorcontrib><creatorcontrib>Saito, Kentaro</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Cai, Xuesong</creatorcontrib><creatorcontrib>Hanpinitsak, Panawit</creatorcontrib><creatorcontrib>Takada, Jun-Ichi</creatorcontrib><creatorcontrib>Pedersen, Gert Frolund</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guojin</au><au>Saito, Kentaro</au><au>Fan, Wei</au><au>Cai, Xuesong</au><au>Hanpinitsak, Panawit</au><au>Takada, Jun-Ichi</au><au>Pedersen, Gert Frolund</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>76516</spage><epage>76526</epage><pages>76516-76526</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2882644</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9835-4485</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.76516-76526 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8542660 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms angular spread Antenna measurements Azimuth channel sounding Decay factor delay spread Delays Elevation angle Frequencies Frequency measurement LOS power ratio Millimeter wave propagation Millimeter waves millimeter-wave Parameter estimation Performance evaluation Propagation Spherical waves Systems design Transmitting antennas Wave propagation Wireless communication |
title | Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Characterization%20of%20Millimeter-Wave%20Indoor%20Propagation%20Channels%20at%2028%20GHz&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Guojin&rft.date=2018-01-01&rft.volume=6&rft.spage=76516&rft.epage=76526&rft.pages=76516-76526&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2882644&rft_dat=%3Cproquest_ieee_%3E2455897617%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455897617&rft_id=info:pmid/&rft_ieee_id=8542660&rft_doaj_id=oai_doaj_org_article_1919a98f9bf14e23a88fcdc54d6af4f1&rfr_iscdi=true |