Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz

The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we condu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.76516-76526
Hauptverfasser: Zhang, Guojin, Saito, Kentaro, Fan, Wei, Cai, Xuesong, Hanpinitsak, Panawit, Takada, Jun-Ichi, Pedersen, Gert Frolund
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76526
container_issue
container_start_page 76516
container_title IEEE access
container_volume 6
creator Zhang, Guojin
Saito, Kentaro
Fan, Wei
Cai, Xuesong
Hanpinitsak, Panawit
Takada, Jun-Ichi
Pedersen, Gert Frolund
description The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.
doi_str_mv 10.1109/ACCESS.2018.2882644
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8542660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8542660</ieee_id><doaj_id>oai_doaj_org_article_1919a98f9bf14e23a88fcdc54d6af4f1</doaj_id><sourcerecordid>2455897617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaLgov4CLwXPXTv5zlHKui6sKKwfxzCbJtqlNmtaRffXG62Ic5nhzXtvEl6WnUI5BSj1-UVVzVarKSlBTYlSRDC2l00ICF1QTsX-v_kwO-n7TZlKJYjLSfYw-9i62Ly4bsA2r54xoh0SsMOhCV0efH7dtG3aJ7B4xHeXL7o6hJjfxrDFp5GVZF3n2j7HIScqn1_tjrMDj23vTn77UXZ_OburrorlzXxRXSwLy0ENhZXoea2pJFIopb0slQWQkiGQkoC2NSBRfk2spdqDX3PrlPRU67UjTDB6lC1G3zrgxmzTRzB-moCN-QFCfDIYh8a2zoAGjVp5vfbAHKGolLe15awW6JmH5HU2em1jeH1z_WA24S126fmGMM6VlgJkYtGRZWPo--j831UozXceZszDfOdhfvNIqtNR1Tjn_hSKMyJESb8AshmF7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455897617</pqid></control><display><type>article</type><title>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Guojin ; Saito, Kentaro ; Fan, Wei ; Cai, Xuesong ; Hanpinitsak, Panawit ; Takada, Jun-Ichi ; Pedersen, Gert Frolund</creator><creatorcontrib>Zhang, Guojin ; Saito, Kentaro ; Fan, Wei ; Cai, Xuesong ; Hanpinitsak, Panawit ; Takada, Jun-Ichi ; Pedersen, Gert Frolund</creatorcontrib><description>The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2882644</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; angular spread ; Antenna measurements ; Azimuth ; channel sounding ; Decay factor ; delay spread ; Delays ; Elevation angle ; Frequencies ; Frequency measurement ; LOS power ratio ; Millimeter wave propagation ; Millimeter waves ; millimeter-wave ; Parameter estimation ; Performance evaluation ; Propagation ; Spherical waves ; Systems design ; Transmitting antennas ; Wave propagation ; Wireless communication</subject><ispartof>IEEE access, 2018-01, Vol.6, p.76516-76526</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</citedby><cites>FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</cites><orcidid>0000-0002-9835-4485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8542660$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Guojin</creatorcontrib><creatorcontrib>Saito, Kentaro</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Cai, Xuesong</creatorcontrib><creatorcontrib>Hanpinitsak, Panawit</creatorcontrib><creatorcontrib>Takada, Jun-Ichi</creatorcontrib><creatorcontrib>Pedersen, Gert Frolund</creatorcontrib><title>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</title><title>IEEE access</title><addtitle>Access</addtitle><description>The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.</description><subject>Algorithms</subject><subject>angular spread</subject><subject>Antenna measurements</subject><subject>Azimuth</subject><subject>channel sounding</subject><subject>Decay factor</subject><subject>delay spread</subject><subject>Delays</subject><subject>Elevation angle</subject><subject>Frequencies</subject><subject>Frequency measurement</subject><subject>LOS power ratio</subject><subject>Millimeter wave propagation</subject><subject>Millimeter waves</subject><subject>millimeter-wave</subject><subject>Parameter estimation</subject><subject>Performance evaluation</subject><subject>Propagation</subject><subject>Spherical waves</subject><subject>Systems design</subject><subject>Transmitting antennas</subject><subject>Wave propagation</subject><subject>Wireless communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaLgov4CLwXPXTv5zlHKui6sKKwfxzCbJtqlNmtaRffXG62Ic5nhzXtvEl6WnUI5BSj1-UVVzVarKSlBTYlSRDC2l00ICF1QTsX-v_kwO-n7TZlKJYjLSfYw-9i62Ly4bsA2r54xoh0SsMOhCV0efH7dtG3aJ7B4xHeXL7o6hJjfxrDFp5GVZF3n2j7HIScqn1_tjrMDj23vTn77UXZ_OburrorlzXxRXSwLy0ENhZXoea2pJFIopb0slQWQkiGQkoC2NSBRfk2spdqDX3PrlPRU67UjTDB6lC1G3zrgxmzTRzB-moCN-QFCfDIYh8a2zoAGjVp5vfbAHKGolLe15awW6JmH5HU2em1jeH1z_WA24S126fmGMM6VlgJkYtGRZWPo--j831UozXceZszDfOdhfvNIqtNR1Tjn_hSKMyJESb8AshmF7A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Guojin</creator><creator>Saito, Kentaro</creator><creator>Fan, Wei</creator><creator>Cai, Xuesong</creator><creator>Hanpinitsak, Panawit</creator><creator>Takada, Jun-Ichi</creator><creator>Pedersen, Gert Frolund</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9835-4485</orcidid></search><sort><creationdate>20180101</creationdate><title>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</title><author>Zhang, Guojin ; Saito, Kentaro ; Fan, Wei ; Cai, Xuesong ; Hanpinitsak, Panawit ; Takada, Jun-Ichi ; Pedersen, Gert Frolund</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-c7af5d937276889f708c11774a120219cd1a28fb2cc39f1fb5ce87f399be24643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>angular spread</topic><topic>Antenna measurements</topic><topic>Azimuth</topic><topic>channel sounding</topic><topic>Decay factor</topic><topic>delay spread</topic><topic>Delays</topic><topic>Elevation angle</topic><topic>Frequencies</topic><topic>Frequency measurement</topic><topic>LOS power ratio</topic><topic>Millimeter wave propagation</topic><topic>Millimeter waves</topic><topic>millimeter-wave</topic><topic>Parameter estimation</topic><topic>Performance evaluation</topic><topic>Propagation</topic><topic>Spherical waves</topic><topic>Systems design</topic><topic>Transmitting antennas</topic><topic>Wave propagation</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guojin</creatorcontrib><creatorcontrib>Saito, Kentaro</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Cai, Xuesong</creatorcontrib><creatorcontrib>Hanpinitsak, Panawit</creatorcontrib><creatorcontrib>Takada, Jun-Ichi</creatorcontrib><creatorcontrib>Pedersen, Gert Frolund</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guojin</au><au>Saito, Kentaro</au><au>Fan, Wei</au><au>Cai, Xuesong</au><au>Hanpinitsak, Panawit</au><au>Takada, Jun-Ichi</au><au>Pedersen, Gert Frolund</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>76516</spage><epage>76526</epage><pages>76516-76526</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The increasing requirement for the mobile data traffic accelerates the research of millimeterwave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation channel is fundamental and essential for the system design and performance evaluation. In this paper, we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall scenarios, at the frequency bands of 27-29 GHz. The spatial channel characteristics were recorded by using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay, source distance, and complex amplitude of multipath components. With the same measurement system, the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios. Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters are also investigated.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2882644</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9835-4485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.76516-76526
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8542660
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
angular spread
Antenna measurements
Azimuth
channel sounding
Decay factor
delay spread
Delays
Elevation angle
Frequencies
Frequency measurement
LOS power ratio
Millimeter wave propagation
Millimeter waves
millimeter-wave
Parameter estimation
Performance evaluation
Propagation
Spherical waves
Systems design
Transmitting antennas
Wave propagation
Wireless communication
title Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Characterization%20of%20Millimeter-Wave%20Indoor%20Propagation%20Channels%20at%2028%20GHz&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Guojin&rft.date=2018-01-01&rft.volume=6&rft.spage=76516&rft.epage=76526&rft.pages=76516-76526&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2882644&rft_dat=%3Cproquest_ieee_%3E2455897617%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455897617&rft_id=info:pmid/&rft_ieee_id=8542660&rft_doaj_id=oai_doaj_org_article_1919a98f9bf14e23a88fcdc54d6af4f1&rfr_iscdi=true