Neural network based fabric classification and blend composition analysis

Fabric classification plays an important role in the textile industry. Fabrics classification and determining the blend composition involves tedious work and time consumption. Knowledge based systems like artificial neural networks may be successfully employed to over come such problems. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Desai, J.V., Bandyopadhyay, B., Kane, C.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236 vol.1
container_issue
container_start_page 231
container_title
container_volume 2
creator Desai, J.V.
Bandyopadhyay, B.
Kane, C.D.
description Fabric classification plays an important role in the textile industry. Fabrics classification and determining the blend composition involves tedious work and time consumption. Knowledge based systems like artificial neural networks may be successfully employed to over come such problems. In this paper, a method is presented to classify and determine blend composition using neural networks. By inputting the mechanical properties measured from Kawabata evaluation system to the neural network, one can get the desired results. A comparative study in the results is made between the backpropagation and radial basis function algorithms to test the suitability of the same for the proposed textile application.
doi_str_mv 10.1109/ICIT.2000.854137
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_854137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>854137</ieee_id><sourcerecordid>854137</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-d1998170bbffaf3f9ed28746159992483bf38c1df8d066120d9b4c50ba6b44de3</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0JJ6X7rSD9i9V5JtaVlMH4aQbtJ1uHqBWscOlkvJ39eQwDADZ2BgGHtEqBDBPPddv68EAFS6VijbG1aYVsMqWWsUzR0rcv5ee1C1Wuk963fhd6aBj2H5m-YfbikHzyPZOTnuBso5xeRoSdPIafTcDmF1Nx1PU05XSsM5p_zAbiMNORTX3LCvt9d991FuP9_77mVbJgS1lB6N0diCtTFSlNEEL3SrGqyNMUJpaaPUDn3UHpoGBXhjlavBUmOV8kFu2NNlN4UQDqc5HWk-Hy5_5T9ukEvT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network based fabric classification and blend composition analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Desai, J.V. ; Bandyopadhyay, B. ; Kane, C.D.</creator><creatorcontrib>Desai, J.V. ; Bandyopadhyay, B. ; Kane, C.D.</creatorcontrib><description>Fabric classification plays an important role in the textile industry. Fabrics classification and determining the blend composition involves tedious work and time consumption. Knowledge based systems like artificial neural networks may be successfully employed to over come such problems. In this paper, a method is presented to classify and determine blend composition using neural networks. By inputting the mechanical properties measured from Kawabata evaluation system to the neural network, one can get the desired results. A comparative study in the results is made between the backpropagation and radial basis function algorithms to test the suitability of the same for the proposed textile application.</description><identifier>ISBN: 9780780358126</identifier><identifier>ISBN: 0780358120</identifier><identifier>DOI: 10.1109/ICIT.2000.854137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Fabrics ; Knowledge based systems ; Mechanical factors ; Neural networks ; Neurons ; Pattern recognition ; Radial basis function networks ; Textile industry ; Textile technology</subject><ispartof>Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482), 2000, Vol.2, p.231-236 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/854137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/854137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Desai, J.V.</creatorcontrib><creatorcontrib>Bandyopadhyay, B.</creatorcontrib><creatorcontrib>Kane, C.D.</creatorcontrib><title>Neural network based fabric classification and blend composition analysis</title><title>Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)</title><addtitle>ICIT</addtitle><description>Fabric classification plays an important role in the textile industry. Fabrics classification and determining the blend composition involves tedious work and time consumption. Knowledge based systems like artificial neural networks may be successfully employed to over come such problems. In this paper, a method is presented to classify and determine blend composition using neural networks. By inputting the mechanical properties measured from Kawabata evaluation system to the neural network, one can get the desired results. A comparative study in the results is made between the backpropagation and radial basis function algorithms to test the suitability of the same for the proposed textile application.</description><subject>Artificial neural networks</subject><subject>Fabrics</subject><subject>Knowledge based systems</subject><subject>Mechanical factors</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Radial basis function networks</subject><subject>Textile industry</subject><subject>Textile technology</subject><isbn>9780780358126</isbn><isbn>0780358120</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0JJ6X7rSD9i9V5JtaVlMH4aQbtJ1uHqBWscOlkvJ39eQwDADZ2BgGHtEqBDBPPddv68EAFS6VijbG1aYVsMqWWsUzR0rcv5ee1C1Wuk963fhd6aBj2H5m-YfbikHzyPZOTnuBso5xeRoSdPIafTcDmF1Nx1PU05XSsM5p_zAbiMNORTX3LCvt9d991FuP9_77mVbJgS1lB6N0diCtTFSlNEEL3SrGqyNMUJpaaPUDn3UHpoGBXhjlavBUmOV8kFu2NNlN4UQDqc5HWk-Hy5_5T9ukEvT</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Desai, J.V.</creator><creator>Bandyopadhyay, B.</creator><creator>Kane, C.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Neural network based fabric classification and blend composition analysis</title><author>Desai, J.V. ; Bandyopadhyay, B. ; Kane, C.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-d1998170bbffaf3f9ed28746159992483bf38c1df8d066120d9b4c50ba6b44de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Fabrics</topic><topic>Knowledge based systems</topic><topic>Mechanical factors</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Radial basis function networks</topic><topic>Textile industry</topic><topic>Textile technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, J.V.</creatorcontrib><creatorcontrib>Bandyopadhyay, B.</creatorcontrib><creatorcontrib>Kane, C.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Desai, J.V.</au><au>Bandyopadhyay, B.</au><au>Kane, C.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network based fabric classification and blend composition analysis</atitle><btitle>Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)</btitle><stitle>ICIT</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>231</spage><epage>236 vol.1</epage><pages>231-236 vol.1</pages><isbn>9780780358126</isbn><isbn>0780358120</isbn><abstract>Fabric classification plays an important role in the textile industry. Fabrics classification and determining the blend composition involves tedious work and time consumption. Knowledge based systems like artificial neural networks may be successfully employed to over come such problems. In this paper, a method is presented to classify and determine blend composition using neural networks. By inputting the mechanical properties measured from Kawabata evaluation system to the neural network, one can get the desired results. A comparative study in the results is made between the backpropagation and radial basis function algorithms to test the suitability of the same for the proposed textile application.</abstract><pub>IEEE</pub><doi>10.1109/ICIT.2000.854137</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780358126
ispartof Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482), 2000, Vol.2, p.231-236 vol.1
issn
language eng
recordid cdi_ieee_primary_854137
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Fabrics
Knowledge based systems
Mechanical factors
Neural networks
Neurons
Pattern recognition
Radial basis function networks
Textile industry
Textile technology
title Neural network based fabric classification and blend composition analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20based%20fabric%20classification%20and%20blend%20composition%20analysis&rft.btitle=Proceedings%20of%20IEEE%20International%20Conference%20on%20Industrial%20Technology%202000%20(IEEE%20Cat.%20No.00TH8482)&rft.au=Desai,%20J.V.&rft.date=2000&rft.volume=2&rft.spage=231&rft.epage=236%20vol.1&rft.pages=231-236%20vol.1&rft.isbn=9780780358126&rft.isbn_list=0780358120&rft_id=info:doi/10.1109/ICIT.2000.854137&rft_dat=%3Cieee_6IE%3E854137%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=854137&rfr_iscdi=true