Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis

Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2019-09, Vol.23 (5), p.2099-2107
Hauptverfasser: Cui, Ruoxuan, Liu, Manhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2107
container_issue 5
container_start_page 2099
container_title IEEE journal of biomedical and health informatics
container_volume 23
creator Cui, Ruoxuan
Liu, Manhua
description Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods.
doi_str_mv 10.1109/JBHI.2018.2882392
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8540939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540939</ieee_id><sourcerecordid>2138636465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</originalsourceid><addsrcrecordid>eNpdkcGO1DAMhiMEYlfLPgBCQpE4wKVDHKdpchxmgFm0ggNwLknrslm1TWmmh-HpyWhm94AvtuzPv2T_jL0EsQIQ9v2XD7ublRRgVtIYiVY-YZcStCmkFObpQw1WXbDrlO5FDpNbVj9nFyhUVVaoLtmvXZim2LhhWhJfj64_pJC4P_BNHHwY3T7EkceOY7HlWxoTfaU9d2PLv9-5iRLv4szX_d87CgPNbxPfhkQuUc7u9xiz1gv2rHN9outzvmI_P338sdkVt98-32zWt0WDyu4LrbxtvbTeCxAddhbAGCOEKqH0XaU86BLa1jboNYGtTEWgdGMVktTaCbxi70660xz_LJT29RBSQ33vRopLqiWg0aiVLjP65j_0Pi5zvj1T0pSIEhEyBSeqmWNKM3X1NIfBzYcaRH10oD46UB8dqM8O5J3XZ-XFD9Q-bjz8OwOvTkAgosexKZWwaPEfQtmHIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285332331</pqid></control><display><type>article</type><title>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Ruoxuan ; Liu, Manhua</creator><creatorcontrib>Cui, Ruoxuan ; Liu, Manhua</creatorcontrib><description>Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2882392</identifier><identifier>PMID: 30475734</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D densenet ; Aged ; Aged, 80 and over ; Alzheimer Disease - diagnostic imaging ; Alzheimer's disease ; Atrophy ; Biomarkers ; Classification ; Cognitive ability ; Deep Learning ; Diagnosis ; Disease control ; Diseases ; Feature extraction ; Female ; Hippocampus ; Hippocampus - diagnostic imaging ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Male ; Medical diagnosis ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; ROC Curve ; Shape ; structural magnetic resonance image ; Three-dimensional displays</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2099-2107</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</citedby><cites>FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</cites><orcidid>0000-0001-6496-670X ; 0000-0002-4789-6452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8540939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30475734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Ruoxuan</creatorcontrib><creatorcontrib>Liu, Manhua</creatorcontrib><title>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods.</description><subject>3D densenet</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer's disease</subject><subject>Atrophy</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Disease control</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Hippocampus</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>ROC Curve</subject><subject>Shape</subject><subject>structural magnetic resonance image</subject><subject>Three-dimensional displays</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkcGO1DAMhiMEYlfLPgBCQpE4wKVDHKdpchxmgFm0ggNwLknrslm1TWmmh-HpyWhm94AvtuzPv2T_jL0EsQIQ9v2XD7ublRRgVtIYiVY-YZcStCmkFObpQw1WXbDrlO5FDpNbVj9nFyhUVVaoLtmvXZim2LhhWhJfj64_pJC4P_BNHHwY3T7EkceOY7HlWxoTfaU9d2PLv9-5iRLv4szX_d87CgPNbxPfhkQuUc7u9xiz1gv2rHN9outzvmI_P338sdkVt98-32zWt0WDyu4LrbxtvbTeCxAddhbAGCOEKqH0XaU86BLa1jboNYGtTEWgdGMVktTaCbxi70660xz_LJT29RBSQ33vRopLqiWg0aiVLjP65j_0Pi5zvj1T0pSIEhEyBSeqmWNKM3X1NIfBzYcaRH10oD46UB8dqM8O5J3XZ-XFD9Q-bjz8OwOvTkAgosexKZWwaPEfQtmHIA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Cui, Ruoxuan</creator><creator>Liu, Manhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6496-670X</orcidid><orcidid>https://orcid.org/0000-0002-4789-6452</orcidid></search><sort><creationdate>201909</creationdate><title>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</title><author>Cui, Ruoxuan ; Liu, Manhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D densenet</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer's disease</topic><topic>Atrophy</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Disease control</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Hippocampus</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>ROC Curve</topic><topic>Shape</topic><topic>structural magnetic resonance image</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Ruoxuan</creatorcontrib><creatorcontrib>Liu, Manhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Ruoxuan</au><au>Liu, Manhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-09</date><risdate>2019</risdate><volume>23</volume><issue>5</issue><spage>2099</spage><epage>2107</epage><pages>2099-2107</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30475734</pmid><doi>10.1109/JBHI.2018.2882392</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6496-670X</orcidid><orcidid>https://orcid.org/0000-0002-4789-6452</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2099-2107
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_8540939
source IEEE Electronic Library (IEL)
subjects 3D densenet
Aged
Aged, 80 and over
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Atrophy
Biomarkers
Classification
Cognitive ability
Deep Learning
Diagnosis
Disease control
Diseases
Feature extraction
Female
Hippocampus
Hippocampus - diagnostic imaging
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Male
Medical diagnosis
Medical imaging
Neurodegenerative diseases
Neuroimaging
Neurology
ROC Curve
Shape
structural magnetic resonance image
Three-dimensional displays
title Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampus%20Analysis%20by%20Combination%20of%203-D%20DenseNet%20and%20Shapes%20for%20Alzheimer's%20Disease%20Diagnosis&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Cui,%20Ruoxuan&rft.date=2019-09&rft.volume=23&rft.issue=5&rft.spage=2099&rft.epage=2107&rft.pages=2099-2107&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2882392&rft_dat=%3Cproquest_RIE%3E2138636465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285332331&rft_id=info:pmid/30475734&rft_ieee_id=8540939&rfr_iscdi=true