Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis
Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume fea...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2019-09, Vol.23 (5), p.2099-2107 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2107 |
---|---|
container_issue | 5 |
container_start_page | 2099 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 23 |
creator | Cui, Ruoxuan Liu, Manhua |
description | Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods. |
doi_str_mv | 10.1109/JBHI.2018.2882392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8540939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540939</ieee_id><sourcerecordid>2138636465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</originalsourceid><addsrcrecordid>eNpdkcGO1DAMhiMEYlfLPgBCQpE4wKVDHKdpchxmgFm0ggNwLknrslm1TWmmh-HpyWhm94AvtuzPv2T_jL0EsQIQ9v2XD7ublRRgVtIYiVY-YZcStCmkFObpQw1WXbDrlO5FDpNbVj9nFyhUVVaoLtmvXZim2LhhWhJfj64_pJC4P_BNHHwY3T7EkceOY7HlWxoTfaU9d2PLv9-5iRLv4szX_d87CgPNbxPfhkQuUc7u9xiz1gv2rHN9outzvmI_P338sdkVt98-32zWt0WDyu4LrbxtvbTeCxAddhbAGCOEKqH0XaU86BLa1jboNYGtTEWgdGMVktTaCbxi70660xz_LJT29RBSQ33vRopLqiWg0aiVLjP65j_0Pi5zvj1T0pSIEhEyBSeqmWNKM3X1NIfBzYcaRH10oD46UB8dqM8O5J3XZ-XFD9Q-bjz8OwOvTkAgosexKZWwaPEfQtmHIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285332331</pqid></control><display><type>article</type><title>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Ruoxuan ; Liu, Manhua</creator><creatorcontrib>Cui, Ruoxuan ; Liu, Manhua</creatorcontrib><description>Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2882392</identifier><identifier>PMID: 30475734</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D densenet ; Aged ; Aged, 80 and over ; Alzheimer Disease - diagnostic imaging ; Alzheimer's disease ; Atrophy ; Biomarkers ; Classification ; Cognitive ability ; Deep Learning ; Diagnosis ; Disease control ; Diseases ; Feature extraction ; Female ; Hippocampus ; Hippocampus - diagnostic imaging ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Male ; Medical diagnosis ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; ROC Curve ; Shape ; structural magnetic resonance image ; Three-dimensional displays</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2099-2107</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</citedby><cites>FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</cites><orcidid>0000-0001-6496-670X ; 0000-0002-4789-6452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8540939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30475734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Ruoxuan</creatorcontrib><creatorcontrib>Liu, Manhua</creatorcontrib><title>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods.</description><subject>3D densenet</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer's disease</subject><subject>Atrophy</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Disease control</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Hippocampus</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>ROC Curve</subject><subject>Shape</subject><subject>structural magnetic resonance image</subject><subject>Three-dimensional displays</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkcGO1DAMhiMEYlfLPgBCQpE4wKVDHKdpchxmgFm0ggNwLknrslm1TWmmh-HpyWhm94AvtuzPv2T_jL0EsQIQ9v2XD7ublRRgVtIYiVY-YZcStCmkFObpQw1WXbDrlO5FDpNbVj9nFyhUVVaoLtmvXZim2LhhWhJfj64_pJC4P_BNHHwY3T7EkceOY7HlWxoTfaU9d2PLv9-5iRLv4szX_d87CgPNbxPfhkQuUc7u9xiz1gv2rHN9outzvmI_P338sdkVt98-32zWt0WDyu4LrbxtvbTeCxAddhbAGCOEKqH0XaU86BLa1jboNYGtTEWgdGMVktTaCbxi70660xz_LJT29RBSQ33vRopLqiWg0aiVLjP65j_0Pi5zvj1T0pSIEhEyBSeqmWNKM3X1NIfBzYcaRH10oD46UB8dqM8O5J3XZ-XFD9Q-bjz8OwOvTkAgosexKZWwaPEfQtmHIA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Cui, Ruoxuan</creator><creator>Liu, Manhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6496-670X</orcidid><orcidid>https://orcid.org/0000-0002-4789-6452</orcidid></search><sort><creationdate>201909</creationdate><title>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</title><author>Cui, Ruoxuan ; Liu, Manhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-64b9db29bb010f3f911888004515bf74b1651dd9c3b6e19787e146c943e266a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D densenet</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer's disease</topic><topic>Atrophy</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Disease control</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Hippocampus</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>ROC Curve</topic><topic>Shape</topic><topic>structural magnetic resonance image</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Ruoxuan</creatorcontrib><creatorcontrib>Liu, Manhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Ruoxuan</au><au>Liu, Manhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-09</date><risdate>2019</risdate><volume>23</volume><issue>5</issue><spage>2099</spage><epage>2107</epage><pages>2099-2107</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Hippocampus is one of the first involved regions in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a prodromal stage of AD. Hippocampal atrophy is a validated, easily accessible, and widely used biomarker for AD diagnosis. Most of existing methods compute the shape and volume features for hippocampus analysis using structural magnetic resonance images (MRI). However, the regions adjacent to hippocampus may be relevant to AD, and the visual features of the hippocampal region are important for disease diagnosis. In this paper, we have proposed a new hippocampus analysis method to combine the global and local features of hippocampus by three-dimensional densely connected convolutional networks and shape analysis for AD diagnosis. The proposed method can make use of the local visual and global shape features to enhance the classification. Tissue segmentation and nonlinear registration are not required in the proposed method. Our method is evaluated with the T1-weighted structural MRIs from 811 subjects including 192 AD, 396 MCI (231 stable MCI and 165 progressive MCI), and 223 normal control in Alzheimer's disease neuroimaging initiative database. Experimental results show the proposed method achieves a classification accuracy of 92.29% and area under the ROC curve of 96.95% for AD diagnosis. Results comparison demonstrates the proposed method performs better than other methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30475734</pmid><doi>10.1109/JBHI.2018.2882392</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6496-670X</orcidid><orcidid>https://orcid.org/0000-0002-4789-6452</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2019-09, Vol.23 (5), p.2099-2107 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_8540939 |
source | IEEE Electronic Library (IEL) |
subjects | 3D densenet Aged Aged, 80 and over Alzheimer Disease - diagnostic imaging Alzheimer's disease Atrophy Biomarkers Classification Cognitive ability Deep Learning Diagnosis Disease control Diseases Feature extraction Female Hippocampus Hippocampus - diagnostic imaging Humans Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Imaging, Three-Dimensional Magnetic Resonance Imaging Male Medical diagnosis Medical imaging Neurodegenerative diseases Neuroimaging Neurology ROC Curve Shape structural magnetic resonance image Three-dimensional displays |
title | Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampus%20Analysis%20by%20Combination%20of%203-D%20DenseNet%20and%20Shapes%20for%20Alzheimer's%20Disease%20Diagnosis&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Cui,%20Ruoxuan&rft.date=2019-09&rft.volume=23&rft.issue=5&rft.spage=2099&rft.epage=2107&rft.pages=2099-2107&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2882392&rft_dat=%3Cproquest_RIE%3E2138636465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285332331&rft_id=info:pmid/30475734&rft_ieee_id=8540939&rfr_iscdi=true |