Analysis on Critical Current Density of an HTS Conductor With Quasi-Isotropic and High Engineering Current Density
A high-temperature superconducting (HTS) conductor with quasi-isotropic and high engineering current density is proposed. The HTS conductor consists of inner quasi-isotropic strand and outer power cable. The inner quasi-isotropic strand, equivalent to a former, is a twisted quasi-isotropic conductor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2019-03, Vol.29 (2), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 29 |
creator | Chen, Hao Wang, Yinshun Yuan, Xi Hu, Yidan Kan, Changtao Liu, Mingchuang Wang, Menghan Peng, Chang Pi, Wei |
description | A high-temperature superconducting (HTS) conductor with quasi-isotropic and high engineering current density is proposed. The HTS conductor consists of inner quasi-isotropic strand and outer power cable. The inner quasi-isotropic strand, equivalent to a former, is a twisted quasi-isotropic conductor made from four components stacked by the second generation (2G) HTS wire with symmetrical arrangement. The outer conductor is made by winding the 2G wire on the inner conductor that is equivalent a power cable. Simply speaking, the HTS conductor is a power cable with replacing the copper former by HTS quasi-isotropic strand so that its engineering critical current is high. The HTS conductor has quasi-isotropic critical current density, since it is a combination of a quasi-isotropic strand and an isotropic power cable. The engineering current density is improved by changing twisting pitch of inner quasi-isotropic conductor and pitch of outer power cable, the conductor is also of benefit to mechanical flexibility and quasi-isotropic critical current density. Additionally, the critical current density of inner quasi-isotropic strand is higher than the one in self-field by considering the effect of longitudinal magnetic fled taking into account. |
doi_str_mv | 10.1109/TASC.2018.2882015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8540011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540011</ieee_id><sourcerecordid>2184772762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-529fd6b6c7542570e05b3827171bcfadbcd2dcfc5021b2b6897e103b5c6e681b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWD9-gLgJuJ6al5lMMssyVlsoiLTiMkwymTalJjXJLPrvndLiwtV9i3MvvIPQA5AxAKmeV5NlPaYExJgKMSS7QCNgTGSUAbscbsIgE5Tm1-gmxi0hUIiCjVCYuGZ3iDZi73AdbLK62eG6D8G4hF-MizYdsO9w4_BstcS1d22vkw_4y6YN_uibaLN59Cn4vdUD1eKZXW_w1K2tMyZYt_6_doeuumYXzf05b9Hn63RVz7LF-9u8niwyTas8ZYxWXVuqUnNWUMaJIUzlgnLgoHTXtEq3tNWdZoSCoqoUFTdAcsV0aUoBKr9FT6fdffA_vYlJbn0fhnejpCAKzikv6UDBidLBxxhMJ_fBfjfhIIHIo1p5VCuPauVZ7dB5PHWsMeaPF6wYtEL-C8HcdVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184772762</pqid></control><display><type>article</type><title>Analysis on Critical Current Density of an HTS Conductor With Quasi-Isotropic and High Engineering Current Density</title><source>IEEE Xplore</source><creator>Chen, Hao ; Wang, Yinshun ; Yuan, Xi ; Hu, Yidan ; Kan, Changtao ; Liu, Mingchuang ; Wang, Menghan ; Peng, Chang ; Pi, Wei</creator><creatorcontrib>Chen, Hao ; Wang, Yinshun ; Yuan, Xi ; Hu, Yidan ; Kan, Changtao ; Liu, Mingchuang ; Wang, Menghan ; Peng, Chang ; Pi, Wei</creatorcontrib><description>A high-temperature superconducting (HTS) conductor with quasi-isotropic and high engineering current density is proposed. The HTS conductor consists of inner quasi-isotropic strand and outer power cable. The inner quasi-isotropic strand, equivalent to a former, is a twisted quasi-isotropic conductor made from four components stacked by the second generation (2G) HTS wire with symmetrical arrangement. The outer conductor is made by winding the 2G wire on the inner conductor that is equivalent a power cable. Simply speaking, the HTS conductor is a power cable with replacing the copper former by HTS quasi-isotropic strand so that its engineering critical current is high. The HTS conductor has quasi-isotropic critical current density, since it is a combination of a quasi-isotropic strand and an isotropic power cable. The engineering current density is improved by changing twisting pitch of inner quasi-isotropic conductor and pitch of outer power cable, the conductor is also of benefit to mechanical flexibility and quasi-isotropic critical current density. Additionally, the critical current density of inner quasi-isotropic strand is higher than the one in self-field by considering the effect of longitudinal magnetic fled taking into account.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2018.2882015</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2G wire ; Cables ; Conductors ; Critical current ; Critical current density ; Critical current density (superconductivity) ; Engineering ; engineering current density ; Equivalence ; High temperature ; High-temperature superconductors ; HTS conductor ; Magnetic fields ; Power cables ; Superconducting cables ; Twisting ; Wire ; Wires</subject><ispartof>IEEE transactions on applied superconductivity, 2019-03, Vol.29 (2), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-529fd6b6c7542570e05b3827171bcfadbcd2dcfc5021b2b6897e103b5c6e681b3</citedby><cites>FETCH-LOGICAL-c293t-529fd6b6c7542570e05b3827171bcfadbcd2dcfc5021b2b6897e103b5c6e681b3</cites><orcidid>0000-0002-4895-3287 ; 0000-0003-4811-6849 ; 0000-0001-9961-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8540011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Wang, Yinshun</creatorcontrib><creatorcontrib>Yuan, Xi</creatorcontrib><creatorcontrib>Hu, Yidan</creatorcontrib><creatorcontrib>Kan, Changtao</creatorcontrib><creatorcontrib>Liu, Mingchuang</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Peng, Chang</creatorcontrib><creatorcontrib>Pi, Wei</creatorcontrib><title>Analysis on Critical Current Density of an HTS Conductor With Quasi-Isotropic and High Engineering Current Density</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A high-temperature superconducting (HTS) conductor with quasi-isotropic and high engineering current density is proposed. The HTS conductor consists of inner quasi-isotropic strand and outer power cable. The inner quasi-isotropic strand, equivalent to a former, is a twisted quasi-isotropic conductor made from four components stacked by the second generation (2G) HTS wire with symmetrical arrangement. The outer conductor is made by winding the 2G wire on the inner conductor that is equivalent a power cable. Simply speaking, the HTS conductor is a power cable with replacing the copper former by HTS quasi-isotropic strand so that its engineering critical current is high. The HTS conductor has quasi-isotropic critical current density, since it is a combination of a quasi-isotropic strand and an isotropic power cable. The engineering current density is improved by changing twisting pitch of inner quasi-isotropic conductor and pitch of outer power cable, the conductor is also of benefit to mechanical flexibility and quasi-isotropic critical current density. Additionally, the critical current density of inner quasi-isotropic strand is higher than the one in self-field by considering the effect of longitudinal magnetic fled taking into account.</description><subject>2G wire</subject><subject>Cables</subject><subject>Conductors</subject><subject>Critical current</subject><subject>Critical current density</subject><subject>Critical current density (superconductivity)</subject><subject>Engineering</subject><subject>engineering current density</subject><subject>Equivalence</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>HTS conductor</subject><subject>Magnetic fields</subject><subject>Power cables</subject><subject>Superconducting cables</subject><subject>Twisting</subject><subject>Wire</subject><subject>Wires</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURYMoWD9-gLgJuJ6al5lMMssyVlsoiLTiMkwymTalJjXJLPrvndLiwtV9i3MvvIPQA5AxAKmeV5NlPaYExJgKMSS7QCNgTGSUAbscbsIgE5Tm1-gmxi0hUIiCjVCYuGZ3iDZi73AdbLK62eG6D8G4hF-MizYdsO9w4_BstcS1d22vkw_4y6YN_uibaLN59Cn4vdUD1eKZXW_w1K2tMyZYt_6_doeuumYXzf05b9Hn63RVz7LF-9u8niwyTas8ZYxWXVuqUnNWUMaJIUzlgnLgoHTXtEq3tNWdZoSCoqoUFTdAcsV0aUoBKr9FT6fdffA_vYlJbn0fhnejpCAKzikv6UDBidLBxxhMJ_fBfjfhIIHIo1p5VCuPauVZ7dB5PHWsMeaPF6wYtEL-C8HcdVQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Chen, Hao</creator><creator>Wang, Yinshun</creator><creator>Yuan, Xi</creator><creator>Hu, Yidan</creator><creator>Kan, Changtao</creator><creator>Liu, Mingchuang</creator><creator>Wang, Menghan</creator><creator>Peng, Chang</creator><creator>Pi, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4895-3287</orcidid><orcidid>https://orcid.org/0000-0003-4811-6849</orcidid><orcidid>https://orcid.org/0000-0001-9961-4202</orcidid></search><sort><creationdate>20190301</creationdate><title>Analysis on Critical Current Density of an HTS Conductor With Quasi-Isotropic and High Engineering Current Density</title><author>Chen, Hao ; Wang, Yinshun ; Yuan, Xi ; Hu, Yidan ; Kan, Changtao ; Liu, Mingchuang ; Wang, Menghan ; Peng, Chang ; Pi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-529fd6b6c7542570e05b3827171bcfadbcd2dcfc5021b2b6897e103b5c6e681b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2G wire</topic><topic>Cables</topic><topic>Conductors</topic><topic>Critical current</topic><topic>Critical current density</topic><topic>Critical current density (superconductivity)</topic><topic>Engineering</topic><topic>engineering current density</topic><topic>Equivalence</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>HTS conductor</topic><topic>Magnetic fields</topic><topic>Power cables</topic><topic>Superconducting cables</topic><topic>Twisting</topic><topic>Wire</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Wang, Yinshun</creatorcontrib><creatorcontrib>Yuan, Xi</creatorcontrib><creatorcontrib>Hu, Yidan</creatorcontrib><creatorcontrib>Kan, Changtao</creatorcontrib><creatorcontrib>Liu, Mingchuang</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Peng, Chang</creatorcontrib><creatorcontrib>Pi, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hao</au><au>Wang, Yinshun</au><au>Yuan, Xi</au><au>Hu, Yidan</au><au>Kan, Changtao</au><au>Liu, Mingchuang</au><au>Wang, Menghan</au><au>Peng, Chang</au><au>Pi, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis on Critical Current Density of an HTS Conductor With Quasi-Isotropic and High Engineering Current Density</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A high-temperature superconducting (HTS) conductor with quasi-isotropic and high engineering current density is proposed. The HTS conductor consists of inner quasi-isotropic strand and outer power cable. The inner quasi-isotropic strand, equivalent to a former, is a twisted quasi-isotropic conductor made from four components stacked by the second generation (2G) HTS wire with symmetrical arrangement. The outer conductor is made by winding the 2G wire on the inner conductor that is equivalent a power cable. Simply speaking, the HTS conductor is a power cable with replacing the copper former by HTS quasi-isotropic strand so that its engineering critical current is high. The HTS conductor has quasi-isotropic critical current density, since it is a combination of a quasi-isotropic strand and an isotropic power cable. The engineering current density is improved by changing twisting pitch of inner quasi-isotropic conductor and pitch of outer power cable, the conductor is also of benefit to mechanical flexibility and quasi-isotropic critical current density. Additionally, the critical current density of inner quasi-isotropic strand is higher than the one in self-field by considering the effect of longitudinal magnetic fled taking into account.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2018.2882015</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4895-3287</orcidid><orcidid>https://orcid.org/0000-0003-4811-6849</orcidid><orcidid>https://orcid.org/0000-0001-9961-4202</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2019-03, Vol.29 (2), p.1-6 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_8540011 |
source | IEEE Xplore |
subjects | 2G wire Cables Conductors Critical current Critical current density Critical current density (superconductivity) Engineering engineering current density Equivalence High temperature High-temperature superconductors HTS conductor Magnetic fields Power cables Superconducting cables Twisting Wire Wires |
title | Analysis on Critical Current Density of an HTS Conductor With Quasi-Isotropic and High Engineering Current Density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20on%20Critical%20Current%20Density%20of%20an%20HTS%20Conductor%20With%20Quasi-Isotropic%20and%20High%20Engineering%20Current%20Density&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Chen,%20Hao&rft.date=2019-03-01&rft.volume=29&rft.issue=2&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2018.2882015&rft_dat=%3Cproquest_RIE%3E2184772762%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184772762&rft_id=info:pmid/&rft_ieee_id=8540011&rfr_iscdi=true |