Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming
Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2019-05, Vol.34 (3), p.1814-1823 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1823 |
---|---|
container_issue | 3 |
container_start_page | 1814 |
container_title | IEEE transactions on power systems |
container_volume | 34 |
creator | Zou, Jikai Ahmed, Shabbir Sun, Xu Andy |
description | Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods. |
doi_str_mv | 10.1109/TPWRS.2018.2880996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8532315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8532315</ieee_id><sourcerecordid>2214426695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKd_QG8KXneefLXJpcyvwcThNnYZ0i6pHWs6k_Ri_97ODfHq8HLe5xx4ELrFMMIY5MNitvqcjwhgMSJCgJTZGRpgzkUKWS7P0QCE4KmQHC7RVQgbAMj6xQCt3rttrEPUlUnmsS2_dIh1mSxdHZNx2zR1bIyLyTLUrvpfeOr0NnnaO930YeKiqYxPZr6tvO4hV12jC6u3wdyc5hAtX54X47d0-vE6GT9O05IBjynOjSkzZteSFoUFrDVIYKUtLIc1ABeCCWkpkUTmBcsLyilkzGjCBC45WDpE98e7O99-dyZEtWk77_qXihDMGMkyyfsWObZK34bgjVU7Xzfa7xUGdRCofgWqg0B1EthDd0eoNsb8AYJTQjGnPygwbQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214426695</pqid></control><display><type>article</type><title>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Jikai ; Ahmed, Shabbir ; Sun, Xu Andy</creator><creatorcontrib>Zou, Jikai ; Ahmed, Shabbir ; Sun, Xu Andy</creatorcontrib><description>Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2018.2880996</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Computation ; Computational modeling ; Dynamic programming ; Heuristic algorithms ; Integer programming ; Linear programming ; Mathematical models ; Mathematical programming ; Multistage ; multistage stochastic integer programming ; Optimization ; Schedules ; stochastic dual dynamic integer programming ; Stochastic processes ; Uncertainty ; Unit commitment</subject><ispartof>IEEE transactions on power systems, 2019-05, Vol.34 (3), p.1814-1823</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</citedby><cites>FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</cites><orcidid>0000-0003-3917-9418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8532315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8532315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zou, Jikai</creatorcontrib><creatorcontrib>Ahmed, Shabbir</creatorcontrib><creatorcontrib>Sun, Xu Andy</creatorcontrib><title>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Dynamic programming</subject><subject>Heuristic algorithms</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Multistage</subject><subject>multistage stochastic integer programming</subject><subject>Optimization</subject><subject>Schedules</subject><subject>stochastic dual dynamic integer programming</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><subject>Unit commitment</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKd_QG8KXneefLXJpcyvwcThNnYZ0i6pHWs6k_Ri_97ODfHq8HLe5xx4ELrFMMIY5MNitvqcjwhgMSJCgJTZGRpgzkUKWS7P0QCE4KmQHC7RVQgbAMj6xQCt3rttrEPUlUnmsS2_dIh1mSxdHZNx2zR1bIyLyTLUrvpfeOr0NnnaO930YeKiqYxPZr6tvO4hV12jC6u3wdyc5hAtX54X47d0-vE6GT9O05IBjynOjSkzZteSFoUFrDVIYKUtLIc1ABeCCWkpkUTmBcsLyilkzGjCBC45WDpE98e7O99-dyZEtWk77_qXihDMGMkyyfsWObZK34bgjVU7Xzfa7xUGdRCofgWqg0B1EthDd0eoNsb8AYJTQjGnPygwbQs</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Zou, Jikai</creator><creator>Ahmed, Shabbir</creator><creator>Sun, Xu Andy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3917-9418</orcidid></search><sort><creationdate>201905</creationdate><title>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</title><author>Zou, Jikai ; Ahmed, Shabbir ; Sun, Xu Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Dynamic programming</topic><topic>Heuristic algorithms</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Multistage</topic><topic>multistage stochastic integer programming</topic><topic>Optimization</topic><topic>Schedules</topic><topic>stochastic dual dynamic integer programming</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><topic>Unit commitment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Jikai</creatorcontrib><creatorcontrib>Ahmed, Shabbir</creatorcontrib><creatorcontrib>Sun, Xu Andy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou, Jikai</au><au>Ahmed, Shabbir</au><au>Sun, Xu Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-05</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>1814</spage><epage>1823</epage><pages>1814-1823</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2018.2880996</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3917-9418</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2019-05, Vol.34 (3), p.1814-1823 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_8532315 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Algorithms Computation Computational modeling Dynamic programming Heuristic algorithms Integer programming Linear programming Mathematical models Mathematical programming Multistage multistage stochastic integer programming Optimization Schedules stochastic dual dynamic integer programming Stochastic processes Uncertainty Unit commitment |
title | Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20Stochastic%20Unit%20Commitment%20Using%20Stochastic%20Dual%20Dynamic%20Integer%20Programming&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zou,%20Jikai&rft.date=2019-05&rft.volume=34&rft.issue=3&rft.spage=1814&rft.epage=1823&rft.pages=1814-1823&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2018.2880996&rft_dat=%3Cproquest_RIE%3E2214426695%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214426695&rft_id=info:pmid/&rft_ieee_id=8532315&rfr_iscdi=true |