Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming

Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-05, Vol.34 (3), p.1814-1823
Hauptverfasser: Zou, Jikai, Ahmed, Shabbir, Sun, Xu Andy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1823
container_issue 3
container_start_page 1814
container_title IEEE transactions on power systems
container_volume 34
creator Zou, Jikai
Ahmed, Shabbir
Sun, Xu Andy
description Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.
doi_str_mv 10.1109/TPWRS.2018.2880996
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8532315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8532315</ieee_id><sourcerecordid>2214426695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKd_QG8KXneefLXJpcyvwcThNnYZ0i6pHWs6k_Ri_97ODfHq8HLe5xx4ELrFMMIY5MNitvqcjwhgMSJCgJTZGRpgzkUKWS7P0QCE4KmQHC7RVQgbAMj6xQCt3rttrEPUlUnmsS2_dIh1mSxdHZNx2zR1bIyLyTLUrvpfeOr0NnnaO930YeKiqYxPZr6tvO4hV12jC6u3wdyc5hAtX54X47d0-vE6GT9O05IBjynOjSkzZteSFoUFrDVIYKUtLIc1ABeCCWkpkUTmBcsLyilkzGjCBC45WDpE98e7O99-dyZEtWk77_qXihDMGMkyyfsWObZK34bgjVU7Xzfa7xUGdRCofgWqg0B1EthDd0eoNsb8AYJTQjGnPygwbQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214426695</pqid></control><display><type>article</type><title>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Jikai ; Ahmed, Shabbir ; Sun, Xu Andy</creator><creatorcontrib>Zou, Jikai ; Ahmed, Shabbir ; Sun, Xu Andy</creatorcontrib><description>Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2018.2880996</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Computation ; Computational modeling ; Dynamic programming ; Heuristic algorithms ; Integer programming ; Linear programming ; Mathematical models ; Mathematical programming ; Multistage ; multistage stochastic integer programming ; Optimization ; Schedules ; stochastic dual dynamic integer programming ; Stochastic processes ; Uncertainty ; Unit commitment</subject><ispartof>IEEE transactions on power systems, 2019-05, Vol.34 (3), p.1814-1823</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</citedby><cites>FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</cites><orcidid>0000-0003-3917-9418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8532315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8532315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zou, Jikai</creatorcontrib><creatorcontrib>Ahmed, Shabbir</creatorcontrib><creatorcontrib>Sun, Xu Andy</creatorcontrib><title>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Dynamic programming</subject><subject>Heuristic algorithms</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Multistage</subject><subject>multistage stochastic integer programming</subject><subject>Optimization</subject><subject>Schedules</subject><subject>stochastic dual dynamic integer programming</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><subject>Unit commitment</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKd_QG8KXneefLXJpcyvwcThNnYZ0i6pHWs6k_Ri_97ODfHq8HLe5xx4ELrFMMIY5MNitvqcjwhgMSJCgJTZGRpgzkUKWS7P0QCE4KmQHC7RVQgbAMj6xQCt3rttrEPUlUnmsS2_dIh1mSxdHZNx2zR1bIyLyTLUrvpfeOr0NnnaO930YeKiqYxPZr6tvO4hV12jC6u3wdyc5hAtX54X47d0-vE6GT9O05IBjynOjSkzZteSFoUFrDVIYKUtLIc1ABeCCWkpkUTmBcsLyilkzGjCBC45WDpE98e7O99-dyZEtWk77_qXihDMGMkyyfsWObZK34bgjVU7Xzfa7xUGdRCofgWqg0B1EthDd0eoNsb8AYJTQjGnPygwbQs</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Zou, Jikai</creator><creator>Ahmed, Shabbir</creator><creator>Sun, Xu Andy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3917-9418</orcidid></search><sort><creationdate>201905</creationdate><title>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</title><author>Zou, Jikai ; Ahmed, Shabbir ; Sun, Xu Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-17eec64fd93bbf01aa0904cfbf50d00588489f329297b47b353064ea2481c50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Dynamic programming</topic><topic>Heuristic algorithms</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Multistage</topic><topic>multistage stochastic integer programming</topic><topic>Optimization</topic><topic>Schedules</topic><topic>stochastic dual dynamic integer programming</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><topic>Unit commitment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Jikai</creatorcontrib><creatorcontrib>Ahmed, Shabbir</creatorcontrib><creatorcontrib>Sun, Xu Andy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou, Jikai</au><au>Ahmed, Shabbir</au><au>Sun, Xu Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-05</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>1814</spage><epage>1823</epage><pages>1814-1823</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2018.2880996</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3917-9418</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2019-05, Vol.34 (3), p.1814-1823
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_8532315
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Computation
Computational modeling
Dynamic programming
Heuristic algorithms
Integer programming
Linear programming
Mathematical models
Mathematical programming
Multistage
multistage stochastic integer programming
Optimization
Schedules
stochastic dual dynamic integer programming
Stochastic processes
Uncertainty
Unit commitment
title Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20Stochastic%20Unit%20Commitment%20Using%20Stochastic%20Dual%20Dynamic%20Integer%20Programming&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zou,%20Jikai&rft.date=2019-05&rft.volume=34&rft.issue=3&rft.spage=1814&rft.epage=1823&rft.pages=1814-1823&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2018.2880996&rft_dat=%3Cproquest_RIE%3E2214426695%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214426695&rft_id=info:pmid/&rft_ieee_id=8532315&rfr_iscdi=true