Robust Reflection Removal Based on Light Field Imaging

In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that pert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-04, Vol.28 (4), p.1798-1812
Hauptverfasser: Tingtian Li, Lun, Daniel P. K., Yuk-Hee Chan, Budianto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1812
container_issue 4
container_start_page 1798
container_title IEEE transactions on image processing
container_volume 28
creator Tingtian Li
Lun, Daniel P. K.
Yuk-Hee Chan
Budianto
description In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes.
doi_str_mv 10.1109/TIP.2018.2880510
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8531774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8531774</ieee_id><sourcerecordid>2141192533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoVqt3QZAFL162zuRjNzlqsVooKKWeQ5rN1i37UTe7gv_e1NYePM0weebN8BByhTBCBHW_mL6NKKAcUSlBIByRM1QcYwBOj0MPIo1T5GpAzr1fAyAXmJySAQOOUoE4I8m8Wfa-i-YuL53tiqYObdV8mTJ6NN5lURjMitVHF00KV2bRtDKrol5dkJPclN5d7uuQvE-eFuOXePb6PB0_zGLLeNrFTCVGhX8YyxWw3EiTWptlymZ2CU7kueDIUobSOkiokImUaK0RMkOXJIqyIbnb5W7a5rN3vtNV4a0rS1O7pveaIqNpSPhFb_-h66Zv63BdoDiiouGMQMGOsm3jfetyvWmLyrTfGkFvnergVG-d6r3TsHKzD-6XlcsOC38SA3C9Awrn3OFZCoZpytkPSaB3hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2141192533</pqid></control><display><type>article</type><title>Robust Reflection Removal Based on Light Field Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Tingtian Li ; Lun, Daniel P. K. ; Yuk-Hee Chan ; Budianto</creator><creatorcontrib>Tingtian Li ; Lun, Daniel P. K. ; Yuk-Hee Chan ; Budianto</creatorcontrib><description>In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2880510</identifier><identifier>PMID: 30418905</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Cameras ; Estimation ; Ill posed problems ; image separation ; Imaging ; Iterative methods ; Light field ; Light reflection ; Optical filters ; Photography ; Reflection ; reflection removal ; Visibility</subject><ispartof>IEEE transactions on image processing, 2019-04, Vol.28 (4), p.1798-1812</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</citedby><cites>FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</cites><orcidid>0000-0003-0029-059X ; 0000-0001-9124-2600 ; 0000-0002-7889-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8531774$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8531774$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30418905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tingtian Li</creatorcontrib><creatorcontrib>Lun, Daniel P. K.</creatorcontrib><creatorcontrib>Yuk-Hee Chan</creatorcontrib><creatorcontrib>Budianto</creatorcontrib><title>Robust Reflection Removal Based on Light Field Imaging</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Estimation</subject><subject>Ill posed problems</subject><subject>image separation</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>Light field</subject><subject>Light reflection</subject><subject>Optical filters</subject><subject>Photography</subject><subject>Reflection</subject><subject>reflection removal</subject><subject>Visibility</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoVqt3QZAFL162zuRjNzlqsVooKKWeQ5rN1i37UTe7gv_e1NYePM0weebN8BByhTBCBHW_mL6NKKAcUSlBIByRM1QcYwBOj0MPIo1T5GpAzr1fAyAXmJySAQOOUoE4I8m8Wfa-i-YuL53tiqYObdV8mTJ6NN5lURjMitVHF00KV2bRtDKrol5dkJPclN5d7uuQvE-eFuOXePb6PB0_zGLLeNrFTCVGhX8YyxWw3EiTWptlymZ2CU7kueDIUobSOkiokImUaK0RMkOXJIqyIbnb5W7a5rN3vtNV4a0rS1O7pveaIqNpSPhFb_-h66Zv63BdoDiiouGMQMGOsm3jfetyvWmLyrTfGkFvnergVG-d6r3TsHKzD-6XlcsOC38SA3C9Awrn3OFZCoZpytkPSaB3hA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Tingtian Li</creator><creator>Lun, Daniel P. K.</creator><creator>Yuk-Hee Chan</creator><creator>Budianto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0029-059X</orcidid><orcidid>https://orcid.org/0000-0001-9124-2600</orcidid><orcidid>https://orcid.org/0000-0002-7889-5006</orcidid></search><sort><creationdate>20190401</creationdate><title>Robust Reflection Removal Based on Light Field Imaging</title><author>Tingtian Li ; Lun, Daniel P. K. ; Yuk-Hee Chan ; Budianto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Estimation</topic><topic>Ill posed problems</topic><topic>image separation</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>Light field</topic><topic>Light reflection</topic><topic>Optical filters</topic><topic>Photography</topic><topic>Reflection</topic><topic>reflection removal</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tingtian Li</creatorcontrib><creatorcontrib>Lun, Daniel P. K.</creatorcontrib><creatorcontrib>Yuk-Hee Chan</creatorcontrib><creatorcontrib>Budianto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tingtian Li</au><au>Lun, Daniel P. K.</au><au>Yuk-Hee Chan</au><au>Budianto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Reflection Removal Based on Light Field Imaging</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>28</volume><issue>4</issue><spage>1798</spage><epage>1812</epage><pages>1798-1812</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30418905</pmid><doi>10.1109/TIP.2018.2880510</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0029-059X</orcidid><orcidid>https://orcid.org/0000-0001-9124-2600</orcidid><orcidid>https://orcid.org/0000-0002-7889-5006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-04, Vol.28 (4), p.1798-1812
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_8531774
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Estimation
Ill posed problems
image separation
Imaging
Iterative methods
Light field
Light reflection
Optical filters
Photography
Reflection
reflection removal
Visibility
title Robust Reflection Removal Based on Light Field Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Reflection%20Removal%20Based%20on%20Light%20Field%20Imaging&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Tingtian%20Li&rft.date=2019-04-01&rft.volume=28&rft.issue=4&rft.spage=1798&rft.epage=1812&rft.pages=1798-1812&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2880510&rft_dat=%3Cproquest_RIE%3E2141192533%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2141192533&rft_id=info:pmid/30418905&rft_ieee_id=8531774&rfr_iscdi=true