Robust Reflection Removal Based on Light Field Imaging
In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that pert...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2019-04, Vol.28 (4), p.1798-1812 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1812 |
---|---|
container_issue | 4 |
container_start_page | 1798 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Tingtian Li Lun, Daniel P. K. Yuk-Hee Chan Budianto |
description | In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes. |
doi_str_mv | 10.1109/TIP.2018.2880510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8531774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8531774</ieee_id><sourcerecordid>2141192533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoVqt3QZAFL162zuRjNzlqsVooKKWeQ5rN1i37UTe7gv_e1NYePM0weebN8BByhTBCBHW_mL6NKKAcUSlBIByRM1QcYwBOj0MPIo1T5GpAzr1fAyAXmJySAQOOUoE4I8m8Wfa-i-YuL53tiqYObdV8mTJ6NN5lURjMitVHF00KV2bRtDKrol5dkJPclN5d7uuQvE-eFuOXePb6PB0_zGLLeNrFTCVGhX8YyxWw3EiTWptlymZ2CU7kueDIUobSOkiokImUaK0RMkOXJIqyIbnb5W7a5rN3vtNV4a0rS1O7pveaIqNpSPhFb_-h66Zv63BdoDiiouGMQMGOsm3jfetyvWmLyrTfGkFvnergVG-d6r3TsHKzD-6XlcsOC38SA3C9Awrn3OFZCoZpytkPSaB3hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2141192533</pqid></control><display><type>article</type><title>Robust Reflection Removal Based on Light Field Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Tingtian Li ; Lun, Daniel P. K. ; Yuk-Hee Chan ; Budianto</creator><creatorcontrib>Tingtian Li ; Lun, Daniel P. K. ; Yuk-Hee Chan ; Budianto</creatorcontrib><description>In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2880510</identifier><identifier>PMID: 30418905</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Cameras ; Estimation ; Ill posed problems ; image separation ; Imaging ; Iterative methods ; Light field ; Light reflection ; Optical filters ; Photography ; Reflection ; reflection removal ; Visibility</subject><ispartof>IEEE transactions on image processing, 2019-04, Vol.28 (4), p.1798-1812</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</citedby><cites>FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</cites><orcidid>0000-0003-0029-059X ; 0000-0001-9124-2600 ; 0000-0002-7889-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8531774$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8531774$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30418905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tingtian Li</creatorcontrib><creatorcontrib>Lun, Daniel P. K.</creatorcontrib><creatorcontrib>Yuk-Hee Chan</creatorcontrib><creatorcontrib>Budianto</creatorcontrib><title>Robust Reflection Removal Based on Light Field Imaging</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Estimation</subject><subject>Ill posed problems</subject><subject>image separation</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>Light field</subject><subject>Light reflection</subject><subject>Optical filters</subject><subject>Photography</subject><subject>Reflection</subject><subject>reflection removal</subject><subject>Visibility</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoVqt3QZAFL162zuRjNzlqsVooKKWeQ5rN1i37UTe7gv_e1NYePM0weebN8BByhTBCBHW_mL6NKKAcUSlBIByRM1QcYwBOj0MPIo1T5GpAzr1fAyAXmJySAQOOUoE4I8m8Wfa-i-YuL53tiqYObdV8mTJ6NN5lURjMitVHF00KV2bRtDKrol5dkJPclN5d7uuQvE-eFuOXePb6PB0_zGLLeNrFTCVGhX8YyxWw3EiTWptlymZ2CU7kueDIUobSOkiokImUaK0RMkOXJIqyIbnb5W7a5rN3vtNV4a0rS1O7pveaIqNpSPhFb_-h66Zv63BdoDiiouGMQMGOsm3jfetyvWmLyrTfGkFvnergVG-d6r3TsHKzD-6XlcsOC38SA3C9Awrn3OFZCoZpytkPSaB3hA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Tingtian Li</creator><creator>Lun, Daniel P. K.</creator><creator>Yuk-Hee Chan</creator><creator>Budianto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0029-059X</orcidid><orcidid>https://orcid.org/0000-0001-9124-2600</orcidid><orcidid>https://orcid.org/0000-0002-7889-5006</orcidid></search><sort><creationdate>20190401</creationdate><title>Robust Reflection Removal Based on Light Field Imaging</title><author>Tingtian Li ; Lun, Daniel P. K. ; Yuk-Hee Chan ; Budianto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-396a990533f903fa8a7ccdd9cdcb0e5ff54137318ce062586881cca58d1e66923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Estimation</topic><topic>Ill posed problems</topic><topic>image separation</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>Light field</topic><topic>Light reflection</topic><topic>Optical filters</topic><topic>Photography</topic><topic>Reflection</topic><topic>reflection removal</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tingtian Li</creatorcontrib><creatorcontrib>Lun, Daniel P. K.</creatorcontrib><creatorcontrib>Yuk-Hee Chan</creatorcontrib><creatorcontrib>Budianto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tingtian Li</au><au>Lun, Daniel P. K.</au><au>Yuk-Hee Chan</au><au>Budianto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Reflection Removal Based on Light Field Imaging</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>28</volume><issue>4</issue><spage>1798</spage><epage>1812</epage><pages>1798-1812</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In daily photography, it is common to capture images in the reflection of an unwanted scene. This circumstance arises frequently when imaging through a semi-reflecting material such as glass. The unwanted reflection will affect the visibility of the background image and introduce ambiguity that perturbs the subsequent analysis on the image. It is a very challenging task to remove the reflection of an image since the problem is severely ill-posed. In this paper, we propose a novel algorithm to solve the reflection removal problem based on light field (LF) imaging. For the proposed algorithm, we first show that the strong gradient points of an LF epipolar plane image (EPI) are preserved after adding to the EPI of another LF image. We can then make use of these strong gradient points to give a rough estimation of the background and reflection. Rather than assuming that the background and reflection have absolutely different disparity ranges, we propose a sandwich layer model to allow them to have common disparities, which is more realistic in practical situations. Then, the background image is refined by recovering the components in the shared disparity range using an iterative enhancement process. Our experimental results show that the proposed algorithm achieves superior performance over traditional approaches both qualitatively and quantitatively. These results verify the robustness of the proposed algorithm when working with images captured from real-life scenes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30418905</pmid><doi>10.1109/TIP.2018.2880510</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0029-059X</orcidid><orcidid>https://orcid.org/0000-0001-9124-2600</orcidid><orcidid>https://orcid.org/0000-0002-7889-5006</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-04, Vol.28 (4), p.1798-1812 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_8531774 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cameras Estimation Ill posed problems image separation Imaging Iterative methods Light field Light reflection Optical filters Photography Reflection reflection removal Visibility |
title | Robust Reflection Removal Based on Light Field Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Reflection%20Removal%20Based%20on%20Light%20Field%20Imaging&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Tingtian%20Li&rft.date=2019-04-01&rft.volume=28&rft.issue=4&rft.spage=1798&rft.epage=1812&rft.pages=1798-1812&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2880510&rft_dat=%3Cproquest_RIE%3E2141192533%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2141192533&rft_id=info:pmid/30418905&rft_ieee_id=8531774&rfr_iscdi=true |