Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar

Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-05, Vol.57 (5), p.2510-2519
Hauptverfasser: Oyama, Kohei, Hirose, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2519
container_issue 5
container_start_page 2510
container_title IEEE transactions on geoscience and remote sensing
container_volume 57
creator Oyama, Kohei
Hirose, Akira
description Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently.
doi_str_mv 10.1109/TGRS.2018.2874049
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8520923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8520923</ieee_id><sourcerecordid>2215070381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</originalsourceid><addsrcrecordid>eNo9UMlOwzAQtRBIlMIHIC6ROKfMeEniY1WxSYilhXPkphOa0trFdoTg63FVxGmWt4zmMXaOMEIEffV6O52NOGA14lUpQeoDNkClqhwKKQ_ZAFAXOa80P2YnIawAUCosB-zneWmC89lLbyJ52zmbPVLvzTqV-OX8R8jaBM86-96vjc-eXWdjNnGbLdlg4o7f2bRNWLeh6Lsmv7fJqSXv9nM2-7ZxSTF14y352HvKpmZh_Ck7as060NlfHbK3m-vXyV3-8HR7Pxk_5I1QOuY0F3NSqpV8XhSLhdSyLQoDrVGigUYiCQQJujGVKLg2TcmxKhd6jmiUVi2IIbvc-269--wpxHrlem_TyZpzVFCCqDCxcM9qvAvBU1tv00fGf9cI9S7iehdxvYu4_os4aS72mo6I_vmV4qC5EL9ZcXoO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215070381</pqid></control><display><type>article</type><title>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Oyama, Kohei ; Hirose, Akira</creator><creatorcontrib>Oyama, Kohei ; Hirose, Akira</creatorcontrib><description>Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2874049</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude ; Amplitudes ; Artificial neural networks ; Biological neural networks ; Compensation ; Complex-valued neural network (CVNN) ; digital elevation model (DEM) ; Digital Elevation Models ; Electromagnetic radiation ; Frameworks ; Interferometric synthetic aperture radar ; Microwave filters ; Neural networks ; Neurons ; phase singular point ; Phasors ; polarimetric interferometric synthetic aperture radar (PolInSAR) ; Polarization ; quaternion neural network (QNN) ; Quaternions ; Radar ; Radar polarimetry ; SAR (radar) ; Synthetic aperture radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-05, Vol.57 (5), p.2510-2519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</citedby><cites>FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</cites><orcidid>0000-0002-6936-9733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8520923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8520923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oyama, Kohei</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><title>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Compensation</subject><subject>Complex-valued neural network (CVNN)</subject><subject>digital elevation model (DEM)</subject><subject>Digital Elevation Models</subject><subject>Electromagnetic radiation</subject><subject>Frameworks</subject><subject>Interferometric synthetic aperture radar</subject><subject>Microwave filters</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>phase singular point</subject><subject>Phasors</subject><subject>polarimetric interferometric synthetic aperture radar (PolInSAR)</subject><subject>Polarization</subject><subject>quaternion neural network (QNN)</subject><subject>Quaternions</subject><subject>Radar</subject><subject>Radar polarimetry</subject><subject>SAR (radar)</subject><subject>Synthetic aperture radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMlOwzAQtRBIlMIHIC6ROKfMeEniY1WxSYilhXPkphOa0trFdoTg63FVxGmWt4zmMXaOMEIEffV6O52NOGA14lUpQeoDNkClqhwKKQ_ZAFAXOa80P2YnIawAUCosB-zneWmC89lLbyJ52zmbPVLvzTqV-OX8R8jaBM86-96vjc-eXWdjNnGbLdlg4o7f2bRNWLeh6Lsmv7fJqSXv9nM2-7ZxSTF14y352HvKpmZh_Ck7as060NlfHbK3m-vXyV3-8HR7Pxk_5I1QOuY0F3NSqpV8XhSLhdSyLQoDrVGigUYiCQQJujGVKLg2TcmxKhd6jmiUVi2IIbvc-269--wpxHrlem_TyZpzVFCCqDCxcM9qvAvBU1tv00fGf9cI9S7iehdxvYu4_os4aS72mo6I_vmV4qC5EL9ZcXoO</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Oyama, Kohei</creator><creator>Hirose, Akira</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6936-9733</orcidid></search><sort><creationdate>20190501</creationdate><title>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</title><author>Oyama, Kohei ; Hirose, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Compensation</topic><topic>Complex-valued neural network (CVNN)</topic><topic>digital elevation model (DEM)</topic><topic>Digital Elevation Models</topic><topic>Electromagnetic radiation</topic><topic>Frameworks</topic><topic>Interferometric synthetic aperture radar</topic><topic>Microwave filters</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>phase singular point</topic><topic>Phasors</topic><topic>polarimetric interferometric synthetic aperture radar (PolInSAR)</topic><topic>Polarization</topic><topic>quaternion neural network (QNN)</topic><topic>Quaternions</topic><topic>Radar</topic><topic>Radar polarimetry</topic><topic>SAR (radar)</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyama, Kohei</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oyama, Kohei</au><au>Hirose, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>57</volume><issue>5</issue><spage>2510</spage><epage>2519</epage><pages>2510-2519</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2874049</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6936-9733</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2019-05, Vol.57 (5), p.2510-2519
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_8520923
source IEEE Electronic Library (IEL)
subjects Amplitude
Amplitudes
Artificial neural networks
Biological neural networks
Compensation
Complex-valued neural network (CVNN)
digital elevation model (DEM)
Digital Elevation Models
Electromagnetic radiation
Frameworks
Interferometric synthetic aperture radar
Microwave filters
Neural networks
Neurons
phase singular point
Phasors
polarimetric interferometric synthetic aperture radar (PolInSAR)
Polarization
quaternion neural network (QNN)
Quaternions
Radar
Radar polarimetry
SAR (radar)
Synthetic aperture radar
title Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phasor%20Quaternion%20Neural%20Networks%20for%20Singular%20Point%20Compensation%20in%20Polarimetric-Interferometric%20Synthetic%20Aperture%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Oyama,%20Kohei&rft.date=2019-05-01&rft.volume=57&rft.issue=5&rft.spage=2510&rft.epage=2519&rft.pages=2510-2519&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2874049&rft_dat=%3Cproquest_RIE%3E2215070381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215070381&rft_id=info:pmid/&rft_ieee_id=8520923&rfr_iscdi=true