Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar
Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phas...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2019-05, Vol.57 (5), p.2510-2519 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2519 |
---|---|
container_issue | 5 |
container_start_page | 2510 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 57 |
creator | Oyama, Kohei Hirose, Akira |
description | Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently. |
doi_str_mv | 10.1109/TGRS.2018.2874049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8520923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8520923</ieee_id><sourcerecordid>2215070381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</originalsourceid><addsrcrecordid>eNo9UMlOwzAQtRBIlMIHIC6ROKfMeEniY1WxSYilhXPkphOa0trFdoTg63FVxGmWt4zmMXaOMEIEffV6O52NOGA14lUpQeoDNkClqhwKKQ_ZAFAXOa80P2YnIawAUCosB-zneWmC89lLbyJ52zmbPVLvzTqV-OX8R8jaBM86-96vjc-eXWdjNnGbLdlg4o7f2bRNWLeh6Lsmv7fJqSXv9nM2-7ZxSTF14y352HvKpmZh_Ck7as060NlfHbK3m-vXyV3-8HR7Pxk_5I1QOuY0F3NSqpV8XhSLhdSyLQoDrVGigUYiCQQJujGVKLg2TcmxKhd6jmiUVi2IIbvc-269--wpxHrlem_TyZpzVFCCqDCxcM9qvAvBU1tv00fGf9cI9S7iehdxvYu4_os4aS72mo6I_vmV4qC5EL9ZcXoO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215070381</pqid></control><display><type>article</type><title>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Oyama, Kohei ; Hirose, Akira</creator><creatorcontrib>Oyama, Kohei ; Hirose, Akira</creatorcontrib><description>Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2874049</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude ; Amplitudes ; Artificial neural networks ; Biological neural networks ; Compensation ; Complex-valued neural network (CVNN) ; digital elevation model (DEM) ; Digital Elevation Models ; Electromagnetic radiation ; Frameworks ; Interferometric synthetic aperture radar ; Microwave filters ; Neural networks ; Neurons ; phase singular point ; Phasors ; polarimetric interferometric synthetic aperture radar (PolInSAR) ; Polarization ; quaternion neural network (QNN) ; Quaternions ; Radar ; Radar polarimetry ; SAR (radar) ; Synthetic aperture radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-05, Vol.57 (5), p.2510-2519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</citedby><cites>FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</cites><orcidid>0000-0002-6936-9733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8520923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8520923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oyama, Kohei</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><title>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Compensation</subject><subject>Complex-valued neural network (CVNN)</subject><subject>digital elevation model (DEM)</subject><subject>Digital Elevation Models</subject><subject>Electromagnetic radiation</subject><subject>Frameworks</subject><subject>Interferometric synthetic aperture radar</subject><subject>Microwave filters</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>phase singular point</subject><subject>Phasors</subject><subject>polarimetric interferometric synthetic aperture radar (PolInSAR)</subject><subject>Polarization</subject><subject>quaternion neural network (QNN)</subject><subject>Quaternions</subject><subject>Radar</subject><subject>Radar polarimetry</subject><subject>SAR (radar)</subject><subject>Synthetic aperture radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMlOwzAQtRBIlMIHIC6ROKfMeEniY1WxSYilhXPkphOa0trFdoTg63FVxGmWt4zmMXaOMEIEffV6O52NOGA14lUpQeoDNkClqhwKKQ_ZAFAXOa80P2YnIawAUCosB-zneWmC89lLbyJ52zmbPVLvzTqV-OX8R8jaBM86-96vjc-eXWdjNnGbLdlg4o7f2bRNWLeh6Lsmv7fJqSXv9nM2-7ZxSTF14y352HvKpmZh_Ck7as060NlfHbK3m-vXyV3-8HR7Pxk_5I1QOuY0F3NSqpV8XhSLhdSyLQoDrVGigUYiCQQJujGVKLg2TcmxKhd6jmiUVi2IIbvc-269--wpxHrlem_TyZpzVFCCqDCxcM9qvAvBU1tv00fGf9cI9S7iehdxvYu4_os4aS72mo6I_vmV4qC5EL9ZcXoO</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Oyama, Kohei</creator><creator>Hirose, Akira</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6936-9733</orcidid></search><sort><creationdate>20190501</creationdate><title>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</title><author>Oyama, Kohei ; Hirose, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-eb3be55f42b66dd494f66a0fa53c0c41e310409ca83629ac72187d9b11a595f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Compensation</topic><topic>Complex-valued neural network (CVNN)</topic><topic>digital elevation model (DEM)</topic><topic>Digital Elevation Models</topic><topic>Electromagnetic radiation</topic><topic>Frameworks</topic><topic>Interferometric synthetic aperture radar</topic><topic>Microwave filters</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>phase singular point</topic><topic>Phasors</topic><topic>polarimetric interferometric synthetic aperture radar (PolInSAR)</topic><topic>Polarization</topic><topic>quaternion neural network (QNN)</topic><topic>Quaternions</topic><topic>Radar</topic><topic>Radar polarimetry</topic><topic>SAR (radar)</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyama, Kohei</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oyama, Kohei</au><au>Hirose, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>57</volume><issue>5</issue><spage>2510</spage><epage>2519</epage><pages>2510-2519</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Interferograms obtained by synthetic aperture radar often include many singular points (SPs), which makes it difficult to generate an accurate digital elevation model. This paper proposes a filtering method to compensate SPs adaptively by using polarization and phase information around the SPs. Phase value is essentially related to polarization changes in scattering as well as propagation. In order to handle the polarization and phase information simultaneously in a consistent manner, we define a new number, phasor quaternion (PQ), by combining quaternion and complex amplitude, with which we construct the theory of PQ neural networks (PQNNs). Experiments demonstrate that the proposed PQNN filter compensates SPs very effectively. Even in the situations where the conventional methods deteriorate in their performance, it realizes accurate compensation, thanks to its good generalization characteristics in integrated Poincare-sphere polarization space and the complex-amplitude space. We find that PQNN is an excellent framework to deal with the polarization and phase of electromagnetic wave adaptively and consistently.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2874049</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6936-9733</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2019-05, Vol.57 (5), p.2510-2519 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_8520923 |
source | IEEE Electronic Library (IEL) |
subjects | Amplitude Amplitudes Artificial neural networks Biological neural networks Compensation Complex-valued neural network (CVNN) digital elevation model (DEM) Digital Elevation Models Electromagnetic radiation Frameworks Interferometric synthetic aperture radar Microwave filters Neural networks Neurons phase singular point Phasors polarimetric interferometric synthetic aperture radar (PolInSAR) Polarization quaternion neural network (QNN) Quaternions Radar Radar polarimetry SAR (radar) Synthetic aperture radar |
title | Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phasor%20Quaternion%20Neural%20Networks%20for%20Singular%20Point%20Compensation%20in%20Polarimetric-Interferometric%20Synthetic%20Aperture%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Oyama,%20Kohei&rft.date=2019-05-01&rft.volume=57&rft.issue=5&rft.spage=2510&rft.epage=2519&rft.pages=2510-2519&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2874049&rft_dat=%3Cproquest_RIE%3E2215070381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215070381&rft_id=info:pmid/&rft_ieee_id=8520923&rfr_iscdi=true |