Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks
Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network direct...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2019-05, Vol.38 (5), p.1097-1105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1105 |
---|---|
container_issue | 5 |
container_start_page | 1097 |
container_title | IEEE transactions on medical imaging |
container_volume | 38 |
creator | Eppenhof, Koen A. J. Pluim, Josien P. W. |
description | Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training. |
doi_str_mv | 10.1109/TMI.2018.2878316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8510836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8510836</ieee_id><sourcerecordid>2126901854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EouWxIyGhSCwsKfZ17DgjqnhUKg9BEd0iO3HaQBoXOwbx73FpYWA6w_3O0dWH0BHBA0Jwdj65HQ0AEzEAkQpK-BbqE8ZEDCyZbqM-hlTEGHPooT3nXjEmCcPZLupRTFNCmeij6YNvFqaV9isaTqJHPatdZ2VXmzaazK3xs3n05JfaftROl9FYS9vW7Sx6qbt5NDTth2n8CpZNdKe9_Ynu09g3d4B2Ktk4fbjJffR8dTkZ3sTj--vR8GIcF1RkXawAGKhUYU4rocsUeFJSWUngaaYlU1IpSBOSlaqkjBaEKkhkBTJhhJOqKOg-OlvvLq1599p1-aJ2hW4a2WrjXQ4EeBYUsSSgp__QV-Nt-D1QEDQCpSkPFF5ThTXOWV3lS1svgqCc4HxlPQ_W85X1fGM9VE42w14tdPlX-NUcgOM1UGut_86CESwop9_8p4ZW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220123376</pqid></control><display><type>article</type><title>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Eppenhof, Koen A. J. ; Pluim, Josien P. W.</creator><creatorcontrib>Eppenhof, Koen A. J. ; Pluim, Josien P. W.</creatorcontrib><description>Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2878316</identifier><identifier>PMID: 30371358</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Biomedical imaging ; Computed tomography ; Convolutional neural networks ; Deformable image registration ; Deformation ; Formability ; Ground truth ; Humans ; Image registration ; Imaging, Three-Dimensional ; Lung ; Lung - diagnostic imaging ; Lungs ; machine learning ; Neural networks ; Neural Networks, Computer ; Parameterization ; pulmonary CT images ; Registration ; Strain ; Supervised learning ; Supervised Machine Learning ; Tomography, X-Ray Computed - methods ; Training ; Transformations</subject><ispartof>IEEE transactions on medical imaging, 2019-05, Vol.38 (5), p.1097-1105</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</citedby><cites>FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</cites><orcidid>0000-0001-5472-2226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8510836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8510836$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30371358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eppenhof, Koen A. J.</creatorcontrib><creatorcontrib>Pluim, Josien P. W.</creatorcontrib><title>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Convolutional neural networks</subject><subject>Deformable image registration</subject><subject>Deformation</subject><subject>Formability</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Image registration</subject><subject>Imaging, Three-Dimensional</subject><subject>Lung</subject><subject>Lung - diagnostic imaging</subject><subject>Lungs</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameterization</subject><subject>pulmonary CT images</subject><subject>Registration</subject><subject>Strain</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Training</subject><subject>Transformations</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkDtPwzAUhS0EouWxIyGhSCwsKfZ17DgjqnhUKg9BEd0iO3HaQBoXOwbx73FpYWA6w_3O0dWH0BHBA0Jwdj65HQ0AEzEAkQpK-BbqE8ZEDCyZbqM-hlTEGHPooT3nXjEmCcPZLupRTFNCmeij6YNvFqaV9isaTqJHPatdZ2VXmzaazK3xs3n05JfaftROl9FYS9vW7Sx6qbt5NDTth2n8CpZNdKe9_Ynu09g3d4B2Ktk4fbjJffR8dTkZ3sTj--vR8GIcF1RkXawAGKhUYU4rocsUeFJSWUngaaYlU1IpSBOSlaqkjBaEKkhkBTJhhJOqKOg-OlvvLq1599p1-aJ2hW4a2WrjXQ4EeBYUsSSgp__QV-Nt-D1QEDQCpSkPFF5ThTXOWV3lS1svgqCc4HxlPQ_W85X1fGM9VE42w14tdPlX-NUcgOM1UGut_86CESwop9_8p4ZW</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Eppenhof, Koen A. J.</creator><creator>Pluim, Josien P. W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5472-2226</orcidid></search><sort><creationdate>20190501</creationdate><title>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</title><author>Eppenhof, Koen A. J. ; Pluim, Josien P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Convolutional neural networks</topic><topic>Deformable image registration</topic><topic>Deformation</topic><topic>Formability</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Image registration</topic><topic>Imaging, Three-Dimensional</topic><topic>Lung</topic><topic>Lung - diagnostic imaging</topic><topic>Lungs</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameterization</topic><topic>pulmonary CT images</topic><topic>Registration</topic><topic>Strain</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Training</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Eppenhof, Koen A. J.</creatorcontrib><creatorcontrib>Pluim, Josien P. W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eppenhof, Koen A. J.</au><au>Pluim, Josien P. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>38</volume><issue>5</issue><spage>1097</spage><epage>1105</epage><pages>1097-1105</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30371358</pmid><doi>10.1109/TMI.2018.2878316</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5472-2226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2019-05, Vol.38 (5), p.1097-1105 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_8510836 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Biomedical imaging Computed tomography Convolutional neural networks Deformable image registration Deformation Formability Ground truth Humans Image registration Imaging, Three-Dimensional Lung Lung - diagnostic imaging Lungs machine learning Neural networks Neural Networks, Computer Parameterization pulmonary CT images Registration Strain Supervised learning Supervised Machine Learning Tomography, X-Ray Computed - methods Training Transformations |
title | Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20CT%20Registration%20Through%20Supervised%20Learning%20With%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Eppenhof,%20Koen%20A.%20J.&rft.date=2019-05-01&rft.volume=38&rft.issue=5&rft.spage=1097&rft.epage=1105&rft.pages=1097-1105&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2878316&rft_dat=%3Cproquest_RIE%3E2126901854%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220123376&rft_id=info:pmid/30371358&rft_ieee_id=8510836&rfr_iscdi=true |