Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks

Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-05, Vol.38 (5), p.1097-1105
Hauptverfasser: Eppenhof, Koen A. J., Pluim, Josien P. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 5
container_start_page 1097
container_title IEEE transactions on medical imaging
container_volume 38
creator Eppenhof, Koen A. J.
Pluim, Josien P. W.
description Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training.
doi_str_mv 10.1109/TMI.2018.2878316
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8510836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8510836</ieee_id><sourcerecordid>2126901854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EouWxIyGhSCwsKfZ17DgjqnhUKg9BEd0iO3HaQBoXOwbx73FpYWA6w_3O0dWH0BHBA0Jwdj65HQ0AEzEAkQpK-BbqE8ZEDCyZbqM-hlTEGHPooT3nXjEmCcPZLupRTFNCmeij6YNvFqaV9isaTqJHPatdZ2VXmzaazK3xs3n05JfaftROl9FYS9vW7Sx6qbt5NDTth2n8CpZNdKe9_Ynu09g3d4B2Ktk4fbjJffR8dTkZ3sTj--vR8GIcF1RkXawAGKhUYU4rocsUeFJSWUngaaYlU1IpSBOSlaqkjBaEKkhkBTJhhJOqKOg-OlvvLq1599p1-aJ2hW4a2WrjXQ4EeBYUsSSgp__QV-Nt-D1QEDQCpSkPFF5ThTXOWV3lS1svgqCc4HxlPQ_W85X1fGM9VE42w14tdPlX-NUcgOM1UGut_86CESwop9_8p4ZW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220123376</pqid></control><display><type>article</type><title>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Eppenhof, Koen A. J. ; Pluim, Josien P. W.</creator><creatorcontrib>Eppenhof, Koen A. J. ; Pluim, Josien P. W.</creatorcontrib><description>Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2878316</identifier><identifier>PMID: 30371358</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Biomedical imaging ; Computed tomography ; Convolutional neural networks ; Deformable image registration ; Deformation ; Formability ; Ground truth ; Humans ; Image registration ; Imaging, Three-Dimensional ; Lung ; Lung - diagnostic imaging ; Lungs ; machine learning ; Neural networks ; Neural Networks, Computer ; Parameterization ; pulmonary CT images ; Registration ; Strain ; Supervised learning ; Supervised Machine Learning ; Tomography, X-Ray Computed - methods ; Training ; Transformations</subject><ispartof>IEEE transactions on medical imaging, 2019-05, Vol.38 (5), p.1097-1105</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</citedby><cites>FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</cites><orcidid>0000-0001-5472-2226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8510836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8510836$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30371358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eppenhof, Koen A. J.</creatorcontrib><creatorcontrib>Pluim, Josien P. W.</creatorcontrib><title>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Convolutional neural networks</subject><subject>Deformable image registration</subject><subject>Deformation</subject><subject>Formability</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Image registration</subject><subject>Imaging, Three-Dimensional</subject><subject>Lung</subject><subject>Lung - diagnostic imaging</subject><subject>Lungs</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameterization</subject><subject>pulmonary CT images</subject><subject>Registration</subject><subject>Strain</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Training</subject><subject>Transformations</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkDtPwzAUhS0EouWxIyGhSCwsKfZ17DgjqnhUKg9BEd0iO3HaQBoXOwbx73FpYWA6w_3O0dWH0BHBA0Jwdj65HQ0AEzEAkQpK-BbqE8ZEDCyZbqM-hlTEGHPooT3nXjEmCcPZLupRTFNCmeij6YNvFqaV9isaTqJHPatdZ2VXmzaazK3xs3n05JfaftROl9FYS9vW7Sx6qbt5NDTth2n8CpZNdKe9_Ynu09g3d4B2Ktk4fbjJffR8dTkZ3sTj--vR8GIcF1RkXawAGKhUYU4rocsUeFJSWUngaaYlU1IpSBOSlaqkjBaEKkhkBTJhhJOqKOg-OlvvLq1599p1-aJ2hW4a2WrjXQ4EeBYUsSSgp__QV-Nt-D1QEDQCpSkPFF5ThTXOWV3lS1svgqCc4HxlPQ_W85X1fGM9VE42w14tdPlX-NUcgOM1UGut_86CESwop9_8p4ZW</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Eppenhof, Koen A. J.</creator><creator>Pluim, Josien P. W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5472-2226</orcidid></search><sort><creationdate>20190501</creationdate><title>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</title><author>Eppenhof, Koen A. J. ; Pluim, Josien P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b2252b7b063f8ed7264d3afa2679ea5babb27419dbd353c13b24af2a45161fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Convolutional neural networks</topic><topic>Deformable image registration</topic><topic>Deformation</topic><topic>Formability</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Image registration</topic><topic>Imaging, Three-Dimensional</topic><topic>Lung</topic><topic>Lung - diagnostic imaging</topic><topic>Lungs</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameterization</topic><topic>pulmonary CT images</topic><topic>Registration</topic><topic>Strain</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Training</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Eppenhof, Koen A. J.</creatorcontrib><creatorcontrib>Pluim, Josien P. W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eppenhof, Koen A. J.</au><au>Pluim, Josien P. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>38</volume><issue>5</issue><spage>1097</spage><epage>1105</epage><pages>1097-1105</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Deformable image registration can be time consuming and often needs extensive parameterization to perform well on a specific application. We present a deformable registration method based on a 3-D convolutional neural network, together with a framework for training such a network. The network directly learns transformations between pairs of 3-D images. The network is trained on synthetic random transformations which are applied to a small set of representative images for the desired application. Training, therefore, does not require manually annotated ground truth information on the deformation. The framework for the generation of transformations for training uses a sequence of multiple transformations at different scales that are applied to the image. This way, complex transformations with large displacements can be modeled without folding or tearing images. The methodology is demonstrated on public data sets of inhale-exhale lung CT image pairs which come with landmarks for evaluation of the registration quality. We show that a small training set can be used to train the network, while still allowing generalization to a separate pulmonary CT data set containing data from a different patient group, acquired using a different scanner and scan protocol. This approach results in an accurate and very fast deformable registration method, without a requirement for parameterization at test time or manually annotated data for training.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30371358</pmid><doi>10.1109/TMI.2018.2878316</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5472-2226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-05, Vol.38 (5), p.1097-1105
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_8510836
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Biomedical imaging
Computed tomography
Convolutional neural networks
Deformable image registration
Deformation
Formability
Ground truth
Humans
Image registration
Imaging, Three-Dimensional
Lung
Lung - diagnostic imaging
Lungs
machine learning
Neural networks
Neural Networks, Computer
Parameterization
pulmonary CT images
Registration
Strain
Supervised learning
Supervised Machine Learning
Tomography, X-Ray Computed - methods
Training
Transformations
title Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20CT%20Registration%20Through%20Supervised%20Learning%20With%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Eppenhof,%20Koen%20A.%20J.&rft.date=2019-05-01&rft.volume=38&rft.issue=5&rft.spage=1097&rft.epage=1105&rft.pages=1097-1105&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2878316&rft_dat=%3Cproquest_RIE%3E2126901854%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220123376&rft_id=info:pmid/30371358&rft_ieee_id=8510836&rfr_iscdi=true