The Electrothermal Instability on Pulsed Power Ablations of Thin Foils
Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pul...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2018-11, Vol.46 (11), p.3753-3765 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3765 |
---|---|
container_issue | 11 |
container_start_page | 3753 |
container_title | IEEE transactions on plasma science |
container_volume | 46 |
creator | Steiner, Adam M. Campbell, Paul C. Yager-Elorriaga, David A. Jordan, Nicholas M. Mcbride, Ryan D. Lau, Y. Y. Gilgenbach, Ronald M. |
description | Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI. |
doi_str_mv | 10.1109/TPS.2018.2873947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8509138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8509138</ieee_id><sourcerecordid>2132040108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3wUvAc-eXpmm_HMfYdDBwYD2HJE1ZR9fMpEX239ux4eldfu89-BHyzGDGGMi3cvs1S4HhLMWCy6y4IRMmuUwkL8QtmQBInnBk_J48xLgHYJmAdEJW5c7RZetsH3y_c-GgW7ruYq9N0zb9ifqOboc2uopu_a8LdG5a3Te-i9TXtNw1HV35po2P5K7WI_Z0zSn5Xi3LxUey-XxfL-abxHKEPmECUZhKoM7rFHTNCp7p3FqNFgU3kEtTQ11ZzYzWFp3JKzQcRQEiSwuJfEpeL7vH4H8GF3u190PoxkuVMp5CBgzOFFwoG3yMwdXqGJqDDifFQJ1tqdGWOttSV1tj5eVSaZxz_zgKkIwj_wOeymVb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132040108</pqid></control><display><type>article</type><title>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</title><source>IEEE Electronic Library (IEL)</source><creator>Steiner, Adam M. ; Campbell, Paul C. ; Yager-Elorriaga, David A. ; Jordan, Nicholas M. ; Mcbride, Ryan D. ; Lau, Y. Y. ; Gilgenbach, Ronald M.</creator><creatorcontrib>Steiner, Adam M. ; Campbell, Paul C. ; Yager-Elorriaga, David A. ; Jordan, Nicholas M. ; Mcbride, Ryan D. ; Lau, Y. Y. ; Gilgenbach, Ronald M.</creatorcontrib><description>Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2018.2873947</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Aluminum ; Conductivity ; Deformation ; Electrothermal effects ; Energy ; Filaments ; Fluid dynamics ; Fluid flow ; Foils (materials) ; Growth rate ; Heat of vaporization ; Heating systems ; Heterogeneity ; High resistance ; Implosions ; Latent heat ; Load resistance ; Magnetohydrodynamics ; Metals ; optical imaging ; Perturbation methods ; Plasma physics ; plasma pinch ; plasma stability ; Plasma temperature ; Predictions ; Stability ; Stability analysis ; Temperature ; Vapor phases ; Vaporization ; Windows (intervals)</subject><ispartof>IEEE transactions on plasma science, 2018-11, Vol.46 (11), p.3753-3765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</citedby><cites>FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</cites><orcidid>0000-0001-9518-4284 ; 0000-0002-5811-4794 ; 0000-0002-5022-9749 ; 0000-0002-6457-2177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8509138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8509138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steiner, Adam M.</creatorcontrib><creatorcontrib>Campbell, Paul C.</creatorcontrib><creatorcontrib>Yager-Elorriaga, David A.</creatorcontrib><creatorcontrib>Jordan, Nicholas M.</creatorcontrib><creatorcontrib>Mcbride, Ryan D.</creatorcontrib><creatorcontrib>Lau, Y. Y.</creatorcontrib><creatorcontrib>Gilgenbach, Ronald M.</creatorcontrib><title>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI.</description><subject>Ablation</subject><subject>Aluminum</subject><subject>Conductivity</subject><subject>Deformation</subject><subject>Electrothermal effects</subject><subject>Energy</subject><subject>Filaments</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Foils (materials)</subject><subject>Growth rate</subject><subject>Heat of vaporization</subject><subject>Heating systems</subject><subject>Heterogeneity</subject><subject>High resistance</subject><subject>Implosions</subject><subject>Latent heat</subject><subject>Load resistance</subject><subject>Magnetohydrodynamics</subject><subject>Metals</subject><subject>optical imaging</subject><subject>Perturbation methods</subject><subject>Plasma physics</subject><subject>plasma pinch</subject><subject>plasma stability</subject><subject>Plasma temperature</subject><subject>Predictions</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Temperature</subject><subject>Vapor phases</subject><subject>Vaporization</subject><subject>Windows (intervals)</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd3wUvAc-eXpmm_HMfYdDBwYD2HJE1ZR9fMpEX239ux4eldfu89-BHyzGDGGMi3cvs1S4HhLMWCy6y4IRMmuUwkL8QtmQBInnBk_J48xLgHYJmAdEJW5c7RZetsH3y_c-GgW7ruYq9N0zb9ifqOboc2uopu_a8LdG5a3Te-i9TXtNw1HV35po2P5K7WI_Z0zSn5Xi3LxUey-XxfL-abxHKEPmECUZhKoM7rFHTNCp7p3FqNFgU3kEtTQ11ZzYzWFp3JKzQcRQEiSwuJfEpeL7vH4H8GF3u190PoxkuVMp5CBgzOFFwoG3yMwdXqGJqDDifFQJ1tqdGWOttSV1tj5eVSaZxz_zgKkIwj_wOeymVb</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Steiner, Adam M.</creator><creator>Campbell, Paul C.</creator><creator>Yager-Elorriaga, David A.</creator><creator>Jordan, Nicholas M.</creator><creator>Mcbride, Ryan D.</creator><creator>Lau, Y. Y.</creator><creator>Gilgenbach, Ronald M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9518-4284</orcidid><orcidid>https://orcid.org/0000-0002-5811-4794</orcidid><orcidid>https://orcid.org/0000-0002-5022-9749</orcidid><orcidid>https://orcid.org/0000-0002-6457-2177</orcidid></search><sort><creationdate>20181101</creationdate><title>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</title><author>Steiner, Adam M. ; Campbell, Paul C. ; Yager-Elorriaga, David A. ; Jordan, Nicholas M. ; Mcbride, Ryan D. ; Lau, Y. Y. ; Gilgenbach, Ronald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ablation</topic><topic>Aluminum</topic><topic>Conductivity</topic><topic>Deformation</topic><topic>Electrothermal effects</topic><topic>Energy</topic><topic>Filaments</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Foils (materials)</topic><topic>Growth rate</topic><topic>Heat of vaporization</topic><topic>Heating systems</topic><topic>Heterogeneity</topic><topic>High resistance</topic><topic>Implosions</topic><topic>Latent heat</topic><topic>Load resistance</topic><topic>Magnetohydrodynamics</topic><topic>Metals</topic><topic>optical imaging</topic><topic>Perturbation methods</topic><topic>Plasma physics</topic><topic>plasma pinch</topic><topic>plasma stability</topic><topic>Plasma temperature</topic><topic>Predictions</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Temperature</topic><topic>Vapor phases</topic><topic>Vaporization</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steiner, Adam M.</creatorcontrib><creatorcontrib>Campbell, Paul C.</creatorcontrib><creatorcontrib>Yager-Elorriaga, David A.</creatorcontrib><creatorcontrib>Jordan, Nicholas M.</creatorcontrib><creatorcontrib>Mcbride, Ryan D.</creatorcontrib><creatorcontrib>Lau, Y. Y.</creatorcontrib><creatorcontrib>Gilgenbach, Ronald M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steiner, Adam M.</au><au>Campbell, Paul C.</au><au>Yager-Elorriaga, David A.</au><au>Jordan, Nicholas M.</au><au>Mcbride, Ryan D.</au><au>Lau, Y. Y.</au><au>Gilgenbach, Ronald M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>46</volume><issue>11</issue><spage>3753</spage><epage>3765</epage><pages>3753-3765</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2018.2873947</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9518-4284</orcidid><orcidid>https://orcid.org/0000-0002-5811-4794</orcidid><orcidid>https://orcid.org/0000-0002-5022-9749</orcidid><orcidid>https://orcid.org/0000-0002-6457-2177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2018-11, Vol.46 (11), p.3753-3765 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_8509138 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation Aluminum Conductivity Deformation Electrothermal effects Energy Filaments Fluid dynamics Fluid flow Foils (materials) Growth rate Heat of vaporization Heating systems Heterogeneity High resistance Implosions Latent heat Load resistance Magnetohydrodynamics Metals optical imaging Perturbation methods Plasma physics plasma pinch plasma stability Plasma temperature Predictions Stability Stability analysis Temperature Vapor phases Vaporization Windows (intervals) |
title | The Electrothermal Instability on Pulsed Power Ablations of Thin Foils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electrothermal%20Instability%20on%20Pulsed%20Power%20Ablations%20of%20Thin%20Foils&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Steiner,%20Adam%20M.&rft.date=2018-11-01&rft.volume=46&rft.issue=11&rft.spage=3753&rft.epage=3765&rft.pages=3753-3765&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2018.2873947&rft_dat=%3Cproquest_RIE%3E2132040108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132040108&rft_id=info:pmid/&rft_ieee_id=8509138&rfr_iscdi=true |