The Electrothermal Instability on Pulsed Power Ablations of Thin Foils

Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2018-11, Vol.46 (11), p.3753-3765
Hauptverfasser: Steiner, Adam M., Campbell, Paul C., Yager-Elorriaga, David A., Jordan, Nicholas M., Mcbride, Ryan D., Lau, Y. Y., Gilgenbach, Ronald M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3765
container_issue 11
container_start_page 3753
container_title IEEE transactions on plasma science
container_volume 46
creator Steiner, Adam M.
Campbell, Paul C.
Yager-Elorriaga, David A.
Jordan, Nicholas M.
Mcbride, Ryan D.
Lau, Y. Y.
Gilgenbach, Ronald M.
description Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI.
doi_str_mv 10.1109/TPS.2018.2873947
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8509138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8509138</ieee_id><sourcerecordid>2132040108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3wUvAc-eXpmm_HMfYdDBwYD2HJE1ZR9fMpEX239ux4eldfu89-BHyzGDGGMi3cvs1S4HhLMWCy6y4IRMmuUwkL8QtmQBInnBk_J48xLgHYJmAdEJW5c7RZetsH3y_c-GgW7ruYq9N0zb9ifqOboc2uopu_a8LdG5a3Te-i9TXtNw1HV35po2P5K7WI_Z0zSn5Xi3LxUey-XxfL-abxHKEPmECUZhKoM7rFHTNCp7p3FqNFgU3kEtTQ11ZzYzWFp3JKzQcRQEiSwuJfEpeL7vH4H8GF3u190PoxkuVMp5CBgzOFFwoG3yMwdXqGJqDDifFQJ1tqdGWOttSV1tj5eVSaZxz_zgKkIwj_wOeymVb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132040108</pqid></control><display><type>article</type><title>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</title><source>IEEE Electronic Library (IEL)</source><creator>Steiner, Adam M. ; Campbell, Paul C. ; Yager-Elorriaga, David A. ; Jordan, Nicholas M. ; Mcbride, Ryan D. ; Lau, Y. Y. ; Gilgenbach, Ronald M.</creator><creatorcontrib>Steiner, Adam M. ; Campbell, Paul C. ; Yager-Elorriaga, David A. ; Jordan, Nicholas M. ; Mcbride, Ryan D. ; Lau, Y. Y. ; Gilgenbach, Ronald M.</creatorcontrib><description>Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2018.2873947</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Aluminum ; Conductivity ; Deformation ; Electrothermal effects ; Energy ; Filaments ; Fluid dynamics ; Fluid flow ; Foils (materials) ; Growth rate ; Heat of vaporization ; Heating systems ; Heterogeneity ; High resistance ; Implosions ; Latent heat ; Load resistance ; Magnetohydrodynamics ; Metals ; optical imaging ; Perturbation methods ; Plasma physics ; plasma pinch ; plasma stability ; Plasma temperature ; Predictions ; Stability ; Stability analysis ; Temperature ; Vapor phases ; Vaporization ; Windows (intervals)</subject><ispartof>IEEE transactions on plasma science, 2018-11, Vol.46 (11), p.3753-3765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</citedby><cites>FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</cites><orcidid>0000-0001-9518-4284 ; 0000-0002-5811-4794 ; 0000-0002-5022-9749 ; 0000-0002-6457-2177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8509138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8509138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steiner, Adam M.</creatorcontrib><creatorcontrib>Campbell, Paul C.</creatorcontrib><creatorcontrib>Yager-Elorriaga, David A.</creatorcontrib><creatorcontrib>Jordan, Nicholas M.</creatorcontrib><creatorcontrib>Mcbride, Ryan D.</creatorcontrib><creatorcontrib>Lau, Y. Y.</creatorcontrib><creatorcontrib>Gilgenbach, Ronald M.</creatorcontrib><title>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI.</description><subject>Ablation</subject><subject>Aluminum</subject><subject>Conductivity</subject><subject>Deformation</subject><subject>Electrothermal effects</subject><subject>Energy</subject><subject>Filaments</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Foils (materials)</subject><subject>Growth rate</subject><subject>Heat of vaporization</subject><subject>Heating systems</subject><subject>Heterogeneity</subject><subject>High resistance</subject><subject>Implosions</subject><subject>Latent heat</subject><subject>Load resistance</subject><subject>Magnetohydrodynamics</subject><subject>Metals</subject><subject>optical imaging</subject><subject>Perturbation methods</subject><subject>Plasma physics</subject><subject>plasma pinch</subject><subject>plasma stability</subject><subject>Plasma temperature</subject><subject>Predictions</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Temperature</subject><subject>Vapor phases</subject><subject>Vaporization</subject><subject>Windows (intervals)</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd3wUvAc-eXpmm_HMfYdDBwYD2HJE1ZR9fMpEX239ux4eldfu89-BHyzGDGGMi3cvs1S4HhLMWCy6y4IRMmuUwkL8QtmQBInnBk_J48xLgHYJmAdEJW5c7RZetsH3y_c-GgW7ruYq9N0zb9ifqOboc2uopu_a8LdG5a3Te-i9TXtNw1HV35po2P5K7WI_Z0zSn5Xi3LxUey-XxfL-abxHKEPmECUZhKoM7rFHTNCp7p3FqNFgU3kEtTQ11ZzYzWFp3JKzQcRQEiSwuJfEpeL7vH4H8GF3u190PoxkuVMp5CBgzOFFwoG3yMwdXqGJqDDifFQJ1tqdGWOttSV1tj5eVSaZxz_zgKkIwj_wOeymVb</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Steiner, Adam M.</creator><creator>Campbell, Paul C.</creator><creator>Yager-Elorriaga, David A.</creator><creator>Jordan, Nicholas M.</creator><creator>Mcbride, Ryan D.</creator><creator>Lau, Y. Y.</creator><creator>Gilgenbach, Ronald M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9518-4284</orcidid><orcidid>https://orcid.org/0000-0002-5811-4794</orcidid><orcidid>https://orcid.org/0000-0002-5022-9749</orcidid><orcidid>https://orcid.org/0000-0002-6457-2177</orcidid></search><sort><creationdate>20181101</creationdate><title>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</title><author>Steiner, Adam M. ; Campbell, Paul C. ; Yager-Elorriaga, David A. ; Jordan, Nicholas M. ; Mcbride, Ryan D. ; Lau, Y. Y. ; Gilgenbach, Ronald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-15885bd58a6f20af1734a6cca8c853b069bf0fdca1baac8eb6d8b385705427983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ablation</topic><topic>Aluminum</topic><topic>Conductivity</topic><topic>Deformation</topic><topic>Electrothermal effects</topic><topic>Energy</topic><topic>Filaments</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Foils (materials)</topic><topic>Growth rate</topic><topic>Heat of vaporization</topic><topic>Heating systems</topic><topic>Heterogeneity</topic><topic>High resistance</topic><topic>Implosions</topic><topic>Latent heat</topic><topic>Load resistance</topic><topic>Magnetohydrodynamics</topic><topic>Metals</topic><topic>optical imaging</topic><topic>Perturbation methods</topic><topic>Plasma physics</topic><topic>plasma pinch</topic><topic>plasma stability</topic><topic>Plasma temperature</topic><topic>Predictions</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Temperature</topic><topic>Vapor phases</topic><topic>Vaporization</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steiner, Adam M.</creatorcontrib><creatorcontrib>Campbell, Paul C.</creatorcontrib><creatorcontrib>Yager-Elorriaga, David A.</creatorcontrib><creatorcontrib>Jordan, Nicholas M.</creatorcontrib><creatorcontrib>Mcbride, Ryan D.</creatorcontrib><creatorcontrib>Lau, Y. Y.</creatorcontrib><creatorcontrib>Gilgenbach, Ronald M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steiner, Adam M.</au><au>Campbell, Paul C.</au><au>Yager-Elorriaga, David A.</au><au>Jordan, Nicholas M.</au><au>Mcbride, Ryan D.</au><au>Lau, Y. Y.</au><au>Gilgenbach, Ronald M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electrothermal Instability on Pulsed Power Ablations of Thin Foils</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>46</volume><issue>11</issue><spage>3753</spage><epage>3765</epage><pages>3753-3765</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Presented are results from the optical imaging of atmospheric ablations of thin aluminum foils. These experiments were performed to evaluate the growth of temperature perturbations attributed to the electrothermal instability (ETI). ETI has been shown to seed magnetohydrodynamic instabilities on pulsed power-driven ablations of initially solid metallic targets, a topic of interest to various programs in pulsed power-driven plasma physics that depend on stable liner implosions. Experimental observations presented herein demonstrate exponentially growing temperature perturbations perpendicular to the direction of current with growth rates consistent with the linear ETI theory. High-temperature regions were observed to enter the vapor phase before sufficient energy had been deposited in the bulk foil to overcome the latent heat of vaporization, indicating a significant spatial heterogeneity in energy deposition rates. The growth rates of these perturbations scale as the square of current density, the predicted behavior for long-wavelength ETI structures. The development of these structures was unchanged by physical deformation of the foil surface, but dramatically influenced by incorporating areas of local high resistance in the foil loads. Extending the observation window in time showed a transition from perpendicular to parallel filaments, which is significant because ETI is predicted to switch orientations when the bulk foil material transitions into the plasma state. Collectively, these results provide an experimental validation of many theoretical predictions regarding ETI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2018.2873947</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9518-4284</orcidid><orcidid>https://orcid.org/0000-0002-5811-4794</orcidid><orcidid>https://orcid.org/0000-0002-5022-9749</orcidid><orcidid>https://orcid.org/0000-0002-6457-2177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2018-11, Vol.46 (11), p.3753-3765
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_8509138
source IEEE Electronic Library (IEL)
subjects Ablation
Aluminum
Conductivity
Deformation
Electrothermal effects
Energy
Filaments
Fluid dynamics
Fluid flow
Foils (materials)
Growth rate
Heat of vaporization
Heating systems
Heterogeneity
High resistance
Implosions
Latent heat
Load resistance
Magnetohydrodynamics
Metals
optical imaging
Perturbation methods
Plasma physics
plasma pinch
plasma stability
Plasma temperature
Predictions
Stability
Stability analysis
Temperature
Vapor phases
Vaporization
Windows (intervals)
title The Electrothermal Instability on Pulsed Power Ablations of Thin Foils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electrothermal%20Instability%20on%20Pulsed%20Power%20Ablations%20of%20Thin%20Foils&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Steiner,%20Adam%20M.&rft.date=2018-11-01&rft.volume=46&rft.issue=11&rft.spage=3753&rft.epage=3765&rft.pages=3753-3765&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2018.2873947&rft_dat=%3Cproquest_RIE%3E2132040108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132040108&rft_id=info:pmid/&rft_ieee_id=8509138&rfr_iscdi=true