Real-Time and DSP-Free 128 Gb/s PAM-4 Link Using a Binary Driven Silicon Photonic Transmitter

Optical transmitters for four-level pulse amplitude modulation (PAM-4) have attracted a significant amount of research in recent years, in large part due to the standardization of the format for the 200 and 400 Gigabit Ethernet optical interconnects in data centers. However, combining low-power and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2019-01, Vol.37 (2), p.274-280
Hauptverfasser: Verbist, Jochem, Lambrecht, Joris, Verplaetse, Michiel, Srinivasan, Srinivasan Ashwyn, De Heyn, Peter, De Keulenaer, Timothy, Pierco, Ramses, Vyncke, Arno, Van Campenhout, Joris, Yin, Xin, Bauwelinck, Johan, Torfs, Guy, Roelkens, Gunther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 2
container_start_page 274
container_title Journal of lightwave technology
container_volume 37
creator Verbist, Jochem
Lambrecht, Joris
Verplaetse, Michiel
Srinivasan, Srinivasan Ashwyn
De Heyn, Peter
De Keulenaer, Timothy
Pierco, Ramses
Vyncke, Arno
Van Campenhout, Joris
Yin, Xin
Bauwelinck, Johan
Torfs, Guy
Roelkens, Gunther
description Optical transmitters for four-level pulse amplitude modulation (PAM-4) have attracted a significant amount of research in recent years, in large part due to the standardization of the format for the 200 and 400 Gigabit Ethernet optical interconnects in data centers. However, combining low-power and linear operation of the electro-optical frontend with sufficiently large bandwidths has proven challenging, especially for the 100 Gb/s/λ links (i.e., employing 50 Gbaud PAM-4). The most straightforward solution has been to deal with the non-idealities of the modulator in the electrical domain: predistorting the signal levels and/or equalizing the frequency response with the help of digital signal processing (DSP). However, this typically requires fast digital-to-analog converters (DACs), either capable of delivering large swings (> 1 Vpp) or supplemented with an additional linear amplifier to drive the optical modulator. Both options substantially increase the power consumption and the complexity of the transceiver. Rather than allocating effort to linearize the electrical to optical conversion of a single modulator, we propose a topology that performs the DAC operation in the optical domain. Two compact electro-absorption modulators in an interferometer layout are driven with NRZ data to generate the four-level signal in the optical domain. Using this topology, we demonstrate the first real-time 128 Gb/s PAM-4 transmission with a silicon photonic transmitter in a chip-to-chip link. In a back-to-back setup, we obtained a bit-error ratio (BER) of 4 × 10 −10 without requiring any DAC, DSP, or modulators with large traveling wave structures. Over 1 km of standard single mode fiber a BER of 8 × 10 −6 is recorded, still well below the KP4 forward error-coding limit. These results correspond to the lowest BERs reported for any real-time PAM-4 link at 100 Gb/s or higher, illustrating the benefit of performing the DAC operation in the optical domain.
doi_str_mv 10.1109/JLT.2018.2877461
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8502074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8502074</ieee_id><sourcerecordid>2184766961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a0fbbede60cbefa92013957d7c37ff40fb081b0ba29874da4385bf6908348f543</originalsourceid><addsrcrecordid>eNo9kM9PwjAYhhujiYjeTbw08Vzor63dEUFQMyORcTRNt7VahA7aYeJ_7wjE03f4nvf78j4A3BI8IARnw5e8GFBM5IBKIXhKzkCPJIlElBJ2DnpYMIakoPwSXMW4wphwLkUPfLwbvUaF2xiofQ0nizmaBmMgoRLOymGE89Er4jB3_hsuo_OfUMMH53X4hZPgfoyHC7d2VePh_KtpG-8qWATt48a1rQnX4MLqdTQ3p9kHy-ljMX5C-dvseTzKUUUz0iKNbVma2qS4Ko3VWdeDZYmoRcWEtbzbYklKXGqaScFrzZlMSptmWDIubcJZH9wf725Ds9ub2KpVsw--e6kokVykaZaSjsJHqgpNjMFYtQ1u01VRBKuDRNVJVAeJ6iSxi9wdI84Y84_LBFMsOPsDTeVqww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184766961</pqid></control><display><type>article</type><title>Real-Time and DSP-Free 128 Gb/s PAM-4 Link Using a Binary Driven Silicon Photonic Transmitter</title><source>IEEE</source><creator>Verbist, Jochem ; Lambrecht, Joris ; Verplaetse, Michiel ; Srinivasan, Srinivasan Ashwyn ; De Heyn, Peter ; De Keulenaer, Timothy ; Pierco, Ramses ; Vyncke, Arno ; Van Campenhout, Joris ; Yin, Xin ; Bauwelinck, Johan ; Torfs, Guy ; Roelkens, Gunther</creator><creatorcontrib>Verbist, Jochem ; Lambrecht, Joris ; Verplaetse, Michiel ; Srinivasan, Srinivasan Ashwyn ; De Heyn, Peter ; De Keulenaer, Timothy ; Pierco, Ramses ; Vyncke, Arno ; Van Campenhout, Joris ; Yin, Xin ; Bauwelinck, Johan ; Torfs, Guy ; Roelkens, Gunther</creatorcontrib><description>Optical transmitters for four-level pulse amplitude modulation (PAM-4) have attracted a significant amount of research in recent years, in large part due to the standardization of the format for the 200 and 400 Gigabit Ethernet optical interconnects in data centers. However, combining low-power and linear operation of the electro-optical frontend with sufficiently large bandwidths has proven challenging, especially for the 100 Gb/s/λ links (i.e., employing 50 Gbaud PAM-4). The most straightforward solution has been to deal with the non-idealities of the modulator in the electrical domain: predistorting the signal levels and/or equalizing the frequency response with the help of digital signal processing (DSP). However, this typically requires fast digital-to-analog converters (DACs), either capable of delivering large swings (&gt; 1 Vpp) or supplemented with an additional linear amplifier to drive the optical modulator. Both options substantially increase the power consumption and the complexity of the transceiver. Rather than allocating effort to linearize the electrical to optical conversion of a single modulator, we propose a topology that performs the DAC operation in the optical domain. Two compact electro-absorption modulators in an interferometer layout are driven with NRZ data to generate the four-level signal in the optical domain. Using this topology, we demonstrate the first real-time 128 Gb/s PAM-4 transmission with a silicon photonic transmitter in a chip-to-chip link. In a back-to-back setup, we obtained a bit-error ratio (BER) of 4 × 10 −10 without requiring any DAC, DSP, or modulators with large traveling wave structures. Over 1 km of standard single mode fiber a BER of 8 × 10 −6 is recorded, still well below the KP4 forward error-coding limit. These results correspond to the lowest BERs reported for any real-time PAM-4 link at 100 Gb/s or higher, illustrating the benefit of performing the DAC operation in the optical domain.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2018.2877461</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; Data centers ; Digital signal processing ; Digital to analog conversion ; Digital to analog converters ; Electroabsorption modulators ; Ethernet ; Frequency response ; Linear amplifiers ; Nonlinear optics ; Optical communication ; Optical interconnects ; Optical interferometry ; Optical modulation ; Optical transmitters ; Photonics ; Power consumption ; Pulse amplitude modulation ; Pulse amplitude modulation (PAM-4) ; Real time ; Real-time systems ; short-reach interconnects ; Silicon ; silicon photonics ; Standardization ; Topology ; Transmitters ; Traveling waves</subject><ispartof>Journal of lightwave technology, 2019-01, Vol.37 (2), p.274-280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a0fbbede60cbefa92013957d7c37ff40fb081b0ba29874da4385bf6908348f543</citedby><cites>FETCH-LOGICAL-c291t-a0fbbede60cbefa92013957d7c37ff40fb081b0ba29874da4385bf6908348f543</cites><orcidid>0000-0002-9672-6652 ; 0000-0002-4667-5092 ; 0000-0003-0778-2669 ; 0000-0003-1817-5370 ; 0000-0001-5254-2408 ; 0000-0002-0274-9715 ; 0000-0001-8291-0339 ; 0000-0002-8941-3797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8502074$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8502074$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verbist, Jochem</creatorcontrib><creatorcontrib>Lambrecht, Joris</creatorcontrib><creatorcontrib>Verplaetse, Michiel</creatorcontrib><creatorcontrib>Srinivasan, Srinivasan Ashwyn</creatorcontrib><creatorcontrib>De Heyn, Peter</creatorcontrib><creatorcontrib>De Keulenaer, Timothy</creatorcontrib><creatorcontrib>Pierco, Ramses</creatorcontrib><creatorcontrib>Vyncke, Arno</creatorcontrib><creatorcontrib>Van Campenhout, Joris</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Bauwelinck, Johan</creatorcontrib><creatorcontrib>Torfs, Guy</creatorcontrib><creatorcontrib>Roelkens, Gunther</creatorcontrib><title>Real-Time and DSP-Free 128 Gb/s PAM-4 Link Using a Binary Driven Silicon Photonic Transmitter</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Optical transmitters for four-level pulse amplitude modulation (PAM-4) have attracted a significant amount of research in recent years, in large part due to the standardization of the format for the 200 and 400 Gigabit Ethernet optical interconnects in data centers. However, combining low-power and linear operation of the electro-optical frontend with sufficiently large bandwidths has proven challenging, especially for the 100 Gb/s/λ links (i.e., employing 50 Gbaud PAM-4). The most straightforward solution has been to deal with the non-idealities of the modulator in the electrical domain: predistorting the signal levels and/or equalizing the frequency response with the help of digital signal processing (DSP). However, this typically requires fast digital-to-analog converters (DACs), either capable of delivering large swings (&gt; 1 Vpp) or supplemented with an additional linear amplifier to drive the optical modulator. Both options substantially increase the power consumption and the complexity of the transceiver. Rather than allocating effort to linearize the electrical to optical conversion of a single modulator, we propose a topology that performs the DAC operation in the optical domain. Two compact electro-absorption modulators in an interferometer layout are driven with NRZ data to generate the four-level signal in the optical domain. Using this topology, we demonstrate the first real-time 128 Gb/s PAM-4 transmission with a silicon photonic transmitter in a chip-to-chip link. In a back-to-back setup, we obtained a bit-error ratio (BER) of 4 × 10 −10 without requiring any DAC, DSP, or modulators with large traveling wave structures. Over 1 km of standard single mode fiber a BER of 8 × 10 −6 is recorded, still well below the KP4 forward error-coding limit. These results correspond to the lowest BERs reported for any real-time PAM-4 link at 100 Gb/s or higher, illustrating the benefit of performing the DAC operation in the optical domain.</description><subject>Adaptive optics</subject><subject>Data centers</subject><subject>Digital signal processing</subject><subject>Digital to analog conversion</subject><subject>Digital to analog converters</subject><subject>Electroabsorption modulators</subject><subject>Ethernet</subject><subject>Frequency response</subject><subject>Linear amplifiers</subject><subject>Nonlinear optics</subject><subject>Optical communication</subject><subject>Optical interconnects</subject><subject>Optical interferometry</subject><subject>Optical modulation</subject><subject>Optical transmitters</subject><subject>Photonics</subject><subject>Power consumption</subject><subject>Pulse amplitude modulation</subject><subject>Pulse amplitude modulation (PAM-4)</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>short-reach interconnects</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Standardization</subject><subject>Topology</subject><subject>Transmitters</subject><subject>Traveling waves</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9PwjAYhhujiYjeTbw08Vzor63dEUFQMyORcTRNt7VahA7aYeJ_7wjE03f4nvf78j4A3BI8IARnw5e8GFBM5IBKIXhKzkCPJIlElBJ2DnpYMIakoPwSXMW4wphwLkUPfLwbvUaF2xiofQ0nizmaBmMgoRLOymGE89Er4jB3_hsuo_OfUMMH53X4hZPgfoyHC7d2VePh_KtpG-8qWATt48a1rQnX4MLqdTQ3p9kHy-ljMX5C-dvseTzKUUUz0iKNbVma2qS4Ko3VWdeDZYmoRcWEtbzbYklKXGqaScFrzZlMSptmWDIubcJZH9wf725Ds9ub2KpVsw--e6kokVykaZaSjsJHqgpNjMFYtQ1u01VRBKuDRNVJVAeJ6iSxi9wdI84Y84_LBFMsOPsDTeVqww</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Verbist, Jochem</creator><creator>Lambrecht, Joris</creator><creator>Verplaetse, Michiel</creator><creator>Srinivasan, Srinivasan Ashwyn</creator><creator>De Heyn, Peter</creator><creator>De Keulenaer, Timothy</creator><creator>Pierco, Ramses</creator><creator>Vyncke, Arno</creator><creator>Van Campenhout, Joris</creator><creator>Yin, Xin</creator><creator>Bauwelinck, Johan</creator><creator>Torfs, Guy</creator><creator>Roelkens, Gunther</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9672-6652</orcidid><orcidid>https://orcid.org/0000-0002-4667-5092</orcidid><orcidid>https://orcid.org/0000-0003-0778-2669</orcidid><orcidid>https://orcid.org/0000-0003-1817-5370</orcidid><orcidid>https://orcid.org/0000-0001-5254-2408</orcidid><orcidid>https://orcid.org/0000-0002-0274-9715</orcidid><orcidid>https://orcid.org/0000-0001-8291-0339</orcidid><orcidid>https://orcid.org/0000-0002-8941-3797</orcidid></search><sort><creationdate>20190115</creationdate><title>Real-Time and DSP-Free 128 Gb/s PAM-4 Link Using a Binary Driven Silicon Photonic Transmitter</title><author>Verbist, Jochem ; Lambrecht, Joris ; Verplaetse, Michiel ; Srinivasan, Srinivasan Ashwyn ; De Heyn, Peter ; De Keulenaer, Timothy ; Pierco, Ramses ; Vyncke, Arno ; Van Campenhout, Joris ; Yin, Xin ; Bauwelinck, Johan ; Torfs, Guy ; Roelkens, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a0fbbede60cbefa92013957d7c37ff40fb081b0ba29874da4385bf6908348f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive optics</topic><topic>Data centers</topic><topic>Digital signal processing</topic><topic>Digital to analog conversion</topic><topic>Digital to analog converters</topic><topic>Electroabsorption modulators</topic><topic>Ethernet</topic><topic>Frequency response</topic><topic>Linear amplifiers</topic><topic>Nonlinear optics</topic><topic>Optical communication</topic><topic>Optical interconnects</topic><topic>Optical interferometry</topic><topic>Optical modulation</topic><topic>Optical transmitters</topic><topic>Photonics</topic><topic>Power consumption</topic><topic>Pulse amplitude modulation</topic><topic>Pulse amplitude modulation (PAM-4)</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>short-reach interconnects</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Standardization</topic><topic>Topology</topic><topic>Transmitters</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbist, Jochem</creatorcontrib><creatorcontrib>Lambrecht, Joris</creatorcontrib><creatorcontrib>Verplaetse, Michiel</creatorcontrib><creatorcontrib>Srinivasan, Srinivasan Ashwyn</creatorcontrib><creatorcontrib>De Heyn, Peter</creatorcontrib><creatorcontrib>De Keulenaer, Timothy</creatorcontrib><creatorcontrib>Pierco, Ramses</creatorcontrib><creatorcontrib>Vyncke, Arno</creatorcontrib><creatorcontrib>Van Campenhout, Joris</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Bauwelinck, Johan</creatorcontrib><creatorcontrib>Torfs, Guy</creatorcontrib><creatorcontrib>Roelkens, Gunther</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verbist, Jochem</au><au>Lambrecht, Joris</au><au>Verplaetse, Michiel</au><au>Srinivasan, Srinivasan Ashwyn</au><au>De Heyn, Peter</au><au>De Keulenaer, Timothy</au><au>Pierco, Ramses</au><au>Vyncke, Arno</au><au>Van Campenhout, Joris</au><au>Yin, Xin</au><au>Bauwelinck, Johan</au><au>Torfs, Guy</au><au>Roelkens, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time and DSP-Free 128 Gb/s PAM-4 Link Using a Binary Driven Silicon Photonic Transmitter</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-01-15</date><risdate>2019</risdate><volume>37</volume><issue>2</issue><spage>274</spage><epage>280</epage><pages>274-280</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Optical transmitters for four-level pulse amplitude modulation (PAM-4) have attracted a significant amount of research in recent years, in large part due to the standardization of the format for the 200 and 400 Gigabit Ethernet optical interconnects in data centers. However, combining low-power and linear operation of the electro-optical frontend with sufficiently large bandwidths has proven challenging, especially for the 100 Gb/s/λ links (i.e., employing 50 Gbaud PAM-4). The most straightforward solution has been to deal with the non-idealities of the modulator in the electrical domain: predistorting the signal levels and/or equalizing the frequency response with the help of digital signal processing (DSP). However, this typically requires fast digital-to-analog converters (DACs), either capable of delivering large swings (&gt; 1 Vpp) or supplemented with an additional linear amplifier to drive the optical modulator. Both options substantially increase the power consumption and the complexity of the transceiver. Rather than allocating effort to linearize the electrical to optical conversion of a single modulator, we propose a topology that performs the DAC operation in the optical domain. Two compact electro-absorption modulators in an interferometer layout are driven with NRZ data to generate the four-level signal in the optical domain. Using this topology, we demonstrate the first real-time 128 Gb/s PAM-4 transmission with a silicon photonic transmitter in a chip-to-chip link. In a back-to-back setup, we obtained a bit-error ratio (BER) of 4 × 10 −10 without requiring any DAC, DSP, or modulators with large traveling wave structures. Over 1 km of standard single mode fiber a BER of 8 × 10 −6 is recorded, still well below the KP4 forward error-coding limit. These results correspond to the lowest BERs reported for any real-time PAM-4 link at 100 Gb/s or higher, illustrating the benefit of performing the DAC operation in the optical domain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2018.2877461</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9672-6652</orcidid><orcidid>https://orcid.org/0000-0002-4667-5092</orcidid><orcidid>https://orcid.org/0000-0003-0778-2669</orcidid><orcidid>https://orcid.org/0000-0003-1817-5370</orcidid><orcidid>https://orcid.org/0000-0001-5254-2408</orcidid><orcidid>https://orcid.org/0000-0002-0274-9715</orcidid><orcidid>https://orcid.org/0000-0001-8291-0339</orcidid><orcidid>https://orcid.org/0000-0002-8941-3797</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2019-01, Vol.37 (2), p.274-280
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_8502074
source IEEE
subjects Adaptive optics
Data centers
Digital signal processing
Digital to analog conversion
Digital to analog converters
Electroabsorption modulators
Ethernet
Frequency response
Linear amplifiers
Nonlinear optics
Optical communication
Optical interconnects
Optical interferometry
Optical modulation
Optical transmitters
Photonics
Power consumption
Pulse amplitude modulation
Pulse amplitude modulation (PAM-4)
Real time
Real-time systems
short-reach interconnects
Silicon
silicon photonics
Standardization
Topology
Transmitters
Traveling waves
title Real-Time and DSP-Free 128 Gb/s PAM-4 Link Using a Binary Driven Silicon Photonic Transmitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20and%20DSP-Free%20128%20Gb/s%20PAM-4%20Link%20Using%20a%20Binary%20Driven%20Silicon%20Photonic%20Transmitter&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Verbist,%20Jochem&rft.date=2019-01-15&rft.volume=37&rft.issue=2&rft.spage=274&rft.epage=280&rft.pages=274-280&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2018.2877461&rft_dat=%3Cproquest_RIE%3E2184766961%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184766961&rft_id=info:pmid/&rft_ieee_id=8502074&rfr_iscdi=true