Unsupervised Detection of Anomalous Sound Based on Deep Learning and the Neyman-Pearson Lemma
This paper proposes a novel optimization principle and its implementation for unsupervised anomaly detection in sound (ADS) using an autoencoder (AE). The goal of the unsupervised-ADS is to detect unknown anomalous sounds without training data of anomalous sounds. The use of an AE as a normal model...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2019-01, Vol.27 (1), p.212-224 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!