Unsupervised Detection of Anomalous Sound Based on Deep Learning and the Neyman-Pearson Lemma

This paper proposes a novel optimization principle and its implementation for unsupervised anomaly detection in sound (ADS) using an autoencoder (AE). The goal of the unsupervised-ADS is to detect unknown anomalous sounds without training data of anomalous sounds. The use of an AE as a normal model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2019-01, Vol.27 (1), p.212-224
Hauptverfasser: Koizumi, Yuma, Saito, Shoichiro, Uematsu, Hisashi, Kawachi, Yuta, Harada, Noboru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!