Silicon Photonic Switch Fabrics: Technology and Architecture

Photonic switching technologies show potential for transforming communication networks across diverse markets from long-haul to short-reach distance scales due to their large bandwidth density, high energy efficiency, and potential for low cost. In recent years, numerous outstanding advancements hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2019-01, Vol.37 (1), p.6-20
Hauptverfasser: Lee, Benjamin G., Dupuis, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 6
container_title Journal of lightwave technology
container_volume 37
creator Lee, Benjamin G.
Dupuis, Nicolas
description Photonic switching technologies show potential for transforming communication networks across diverse markets from long-haul to short-reach distance scales due to their large bandwidth density, high energy efficiency, and potential for low cost. In recent years, numerous outstanding advancements have been made in scaled silicon photonic switching fabrics: spanning a variety of manufacturing platforms and packaging methods, relying on different switching mechanisms, and assembled on-chip in a diverse mixture of loosely related architectures. This paper reviews the current approaches employed by leading researchers in this area, and surveys the state of the art in achieved performance at both the technological and the architectural level. Specifically, we consider thermo-optic, electro-optic, and MEMS-based switch actuation embedded in Mach-Zehnder interferometer, ring resonator, and directional coupler based silicon photonic switches. We define common metrics and compare performances. We outline critical requirements for constructing scaled switch fabrics from elementary cells. We investigate similarities and differences between a number of commonly utilized topologies. And, we survey recent accomplishments in scaled switch fabrics at the chip and package level. Moving these demonstrations from research to product will require many further advancements, and we highlight areas that we believe will be critical for market adoption.
doi_str_mv 10.1109/JLT.2018.2876828
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8496767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8496767</ieee_id><sourcerecordid>2175664164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7b8acd205738b5724753c428dbe71db25fc8e94f5fdc9cc0f4d1de6592321fc13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wc2A66l5JyNuilgfFBRa12HmJnFS6qQmU6T_3iktrs7mO_cePoSuCZ4Qgqu7t_lyQjHRE6qV1FSfoBERQpeUEnaKRlgxVmpF-Tm6yHmFMeFcqxF6WIR1gNgVH23sYxegWPyGHtpiVjcpQL4vlg7aLq7j166oO1tME7Shd9Bvk7tEZ75eZ3d1zDH6nD0tH1_K-fvz6-N0XgLnsi9Vo2uwFAvFdCOGDUow4FTbxiliGyo8aFdxL7yFCgB7bol1UlSUUeKBsDG6PdzdpPizdbk3q7hN3fDSUKKElJxIPlD4QEGKOSfnzSaF7zrtDMFm78gMjszekTk6Gio3h0pwzv3jmldSScX-AA3tYfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175664164</pqid></control><display><type>article</type><title>Silicon Photonic Switch Fabrics: Technology and Architecture</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Benjamin G. ; Dupuis, Nicolas</creator><creatorcontrib>Lee, Benjamin G. ; Dupuis, Nicolas</creatorcontrib><description>Photonic switching technologies show potential for transforming communication networks across diverse markets from long-haul to short-reach distance scales due to their large bandwidth density, high energy efficiency, and potential for low cost. In recent years, numerous outstanding advancements have been made in scaled silicon photonic switching fabrics: spanning a variety of manufacturing platforms and packaging methods, relying on different switching mechanisms, and assembled on-chip in a diverse mixture of loosely related architectures. This paper reviews the current approaches employed by leading researchers in this area, and surveys the state of the art in achieved performance at both the technological and the architectural level. Specifically, we consider thermo-optic, electro-optic, and MEMS-based switch actuation embedded in Mach-Zehnder interferometer, ring resonator, and directional coupler based silicon photonic switches. We define common metrics and compare performances. We outline critical requirements for constructing scaled switch fabrics from elementary cells. We investigate similarities and differences between a number of commonly utilized topologies. And, we survey recent accomplishments in scaled switch fabrics at the chip and package level. Moving these demonstrations from research to product will require many further advancements, and we highlight areas that we believe will be critical for market adoption.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2018.2876828</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Communication networks ; Directional couplers ; Fabrics ; Heating systems ; Mach-Zehnder interferometers ; Optical crosstalk ; Optical switches ; Optical switching ; Optical waveguides ; photonic integrated circuits ; Photonic switches ; Photonics ; Silicon ; Switches ; Switching theory</subject><ispartof>Journal of lightwave technology, 2019-01, Vol.37 (1), p.6-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7b8acd205738b5724753c428dbe71db25fc8e94f5fdc9cc0f4d1de6592321fc13</citedby><cites>FETCH-LOGICAL-c446t-7b8acd205738b5724753c428dbe71db25fc8e94f5fdc9cc0f4d1de6592321fc13</cites><orcidid>0000-0002-2785-1492 ; 0000-0002-5813-8323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8496767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8496767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Benjamin G.</creatorcontrib><creatorcontrib>Dupuis, Nicolas</creatorcontrib><title>Silicon Photonic Switch Fabrics: Technology and Architecture</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Photonic switching technologies show potential for transforming communication networks across diverse markets from long-haul to short-reach distance scales due to their large bandwidth density, high energy efficiency, and potential for low cost. In recent years, numerous outstanding advancements have been made in scaled silicon photonic switching fabrics: spanning a variety of manufacturing platforms and packaging methods, relying on different switching mechanisms, and assembled on-chip in a diverse mixture of loosely related architectures. This paper reviews the current approaches employed by leading researchers in this area, and surveys the state of the art in achieved performance at both the technological and the architectural level. Specifically, we consider thermo-optic, electro-optic, and MEMS-based switch actuation embedded in Mach-Zehnder interferometer, ring resonator, and directional coupler based silicon photonic switches. We define common metrics and compare performances. We outline critical requirements for constructing scaled switch fabrics from elementary cells. We investigate similarities and differences between a number of commonly utilized topologies. And, we survey recent accomplishments in scaled switch fabrics at the chip and package level. Moving these demonstrations from research to product will require many further advancements, and we highlight areas that we believe will be critical for market adoption.</description><subject>Actuation</subject><subject>Communication networks</subject><subject>Directional couplers</subject><subject>Fabrics</subject><subject>Heating systems</subject><subject>Mach-Zehnder interferometers</subject><subject>Optical crosstalk</subject><subject>Optical switches</subject><subject>Optical switching</subject><subject>Optical waveguides</subject><subject>photonic integrated circuits</subject><subject>Photonic switches</subject><subject>Photonics</subject><subject>Silicon</subject><subject>Switches</subject><subject>Switching theory</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wc2A66l5JyNuilgfFBRa12HmJnFS6qQmU6T_3iktrs7mO_cePoSuCZ4Qgqu7t_lyQjHRE6qV1FSfoBERQpeUEnaKRlgxVmpF-Tm6yHmFMeFcqxF6WIR1gNgVH23sYxegWPyGHtpiVjcpQL4vlg7aLq7j166oO1tME7Shd9Bvk7tEZ75eZ3d1zDH6nD0tH1_K-fvz6-N0XgLnsi9Vo2uwFAvFdCOGDUow4FTbxiliGyo8aFdxL7yFCgB7bol1UlSUUeKBsDG6PdzdpPizdbk3q7hN3fDSUKKElJxIPlD4QEGKOSfnzSaF7zrtDMFm78gMjszekTk6Gio3h0pwzv3jmldSScX-AA3tYfA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lee, Benjamin G.</creator><creator>Dupuis, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2785-1492</orcidid><orcidid>https://orcid.org/0000-0002-5813-8323</orcidid></search><sort><creationdate>20190101</creationdate><title>Silicon Photonic Switch Fabrics: Technology and Architecture</title><author>Lee, Benjamin G. ; Dupuis, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7b8acd205738b5724753c428dbe71db25fc8e94f5fdc9cc0f4d1de6592321fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Communication networks</topic><topic>Directional couplers</topic><topic>Fabrics</topic><topic>Heating systems</topic><topic>Mach-Zehnder interferometers</topic><topic>Optical crosstalk</topic><topic>Optical switches</topic><topic>Optical switching</topic><topic>Optical waveguides</topic><topic>photonic integrated circuits</topic><topic>Photonic switches</topic><topic>Photonics</topic><topic>Silicon</topic><topic>Switches</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Benjamin G.</creatorcontrib><creatorcontrib>Dupuis, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Benjamin G.</au><au>Dupuis, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon Photonic Switch Fabrics: Technology and Architecture</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>1</issue><spage>6</spage><epage>20</epage><pages>6-20</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Photonic switching technologies show potential for transforming communication networks across diverse markets from long-haul to short-reach distance scales due to their large bandwidth density, high energy efficiency, and potential for low cost. In recent years, numerous outstanding advancements have been made in scaled silicon photonic switching fabrics: spanning a variety of manufacturing platforms and packaging methods, relying on different switching mechanisms, and assembled on-chip in a diverse mixture of loosely related architectures. This paper reviews the current approaches employed by leading researchers in this area, and surveys the state of the art in achieved performance at both the technological and the architectural level. Specifically, we consider thermo-optic, electro-optic, and MEMS-based switch actuation embedded in Mach-Zehnder interferometer, ring resonator, and directional coupler based silicon photonic switches. We define common metrics and compare performances. We outline critical requirements for constructing scaled switch fabrics from elementary cells. We investigate similarities and differences between a number of commonly utilized topologies. And, we survey recent accomplishments in scaled switch fabrics at the chip and package level. Moving these demonstrations from research to product will require many further advancements, and we highlight areas that we believe will be critical for market adoption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2018.2876828</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2785-1492</orcidid><orcidid>https://orcid.org/0000-0002-5813-8323</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2019-01, Vol.37 (1), p.6-20
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_8496767
source IEEE Electronic Library (IEL)
subjects Actuation
Communication networks
Directional couplers
Fabrics
Heating systems
Mach-Zehnder interferometers
Optical crosstalk
Optical switches
Optical switching
Optical waveguides
photonic integrated circuits
Photonic switches
Photonics
Silicon
Switches
Switching theory
title Silicon Photonic Switch Fabrics: Technology and Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20Photonic%20Switch%20Fabrics:%20Technology%20and%20Architecture&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Lee,%20Benjamin%20G.&rft.date=2019-01-01&rft.volume=37&rft.issue=1&rft.spage=6&rft.epage=20&rft.pages=6-20&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2018.2876828&rft_dat=%3Cproquest_RIE%3E2175664164%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175664164&rft_id=info:pmid/&rft_ieee_id=8496767&rfr_iscdi=true