Efficient Computation of Multivariate Rayleigh and Exponential Distributions

We propose an efficient approach for the computation of cumulative distribution functions of {N} correlated Rayleigh or exponential random variables (RVs) for arbitrary covariance matrices, which arise in the design and analysis of many wireless systems. Compared to the approaches in the literatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2019-04, Vol.8 (2), p.456-459
Hauptverfasser: Isaac, Reneeta Sara, Mehta, Neelesh B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 2
container_start_page 456
container_title IEEE wireless communications letters
container_volume 8
creator Isaac, Reneeta Sara
Mehta, Neelesh B.
description We propose an efficient approach for the computation of cumulative distribution functions of {N} correlated Rayleigh or exponential random variables (RVs) for arbitrary covariance matrices, which arise in the design and analysis of many wireless systems. Compared to the approaches in the literature, it employs a fast and accurate randomized quasi-Monte Carlo method that markedly reduces the computational complexity by several orders of magnitude as {N} or the correlation among the RVs increases. Numerical results show that an order of magnitude larger values of {N} can now be computed for. Its application to the performance analysis of selection combining is also shown.
doi_str_mv 10.1109/LWC.2018.2875999
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8491394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8491394</ieee_id><sourcerecordid>2210028418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-30ed92d6770571b05a1f097da8aadf0ee8e04eb60aa14ba2903b148ceead04a83</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouKx7F7wUPHedSb-So9T1AyqCKB7DtE01S7etSSruv7dlZefyzuF9ZuBh7BJhjQjypvjI1xxQrLnIEinlCVtwTHnIozg5Pe5Rds5Wzm1hmhSQo1iwYtM0pjK680He74bRkzd9F_RN8Dy23vyQNeR18Er7VpvPr4C6Otj8Dn03EYba4M44b005zpS7YGcNtU6v_nPJ3u83b_ljWLw8POW3RVhxiT6MQNeS12mWQZJhCQlhAzKrSRDVDWgtNMS6TIEI45K4hKjEWFRaUw0xiWjJrg93B9t_j9p5te1H200vFecIwEWMcwsOrcr2zlndqMGaHdm9QlCzNjVpU7M29a9tQq4OiNFaH-silhjJOPoDSABpZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210028418</pqid></control><display><type>article</type><title>Efficient Computation of Multivariate Rayleigh and Exponential Distributions</title><source>IEEE Electronic Library (IEL)</source><creator>Isaac, Reneeta Sara ; Mehta, Neelesh B.</creator><creatorcontrib>Isaac, Reneeta Sara ; Mehta, Neelesh B.</creatorcontrib><description><![CDATA[We propose an efficient approach for the computation of cumulative distribution functions of <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> correlated Rayleigh or exponential random variables (RVs) for arbitrary covariance matrices, which arise in the design and analysis of many wireless systems. Compared to the approaches in the literature, it employs a fast and accurate randomized quasi-Monte Carlo method that markedly reduces the computational complexity by several orders of magnitude as <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> or the correlation among the RVs increases. Numerical results show that an order of magnitude larger values of <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> can now be computed for. Its application to the performance analysis of selection combining is also shown.]]></description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2018.2875999</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational complexity ; Computational efficiency ; Computer simulation ; Convergence ; correlated fading ; Correlation ; Covariance matrices ; Covariance matrix ; cumulative distribution function ; Distribution functions ; exponential ; Monte Carlo simulation ; Multivariate ; Probability density function ; Random variables ; Rayleigh ; Relays ; Wireless communication</subject><ispartof>IEEE wireless communications letters, 2019-04, Vol.8 (2), p.456-459</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-30ed92d6770571b05a1f097da8aadf0ee8e04eb60aa14ba2903b148ceead04a83</citedby><cites>FETCH-LOGICAL-c291t-30ed92d6770571b05a1f097da8aadf0ee8e04eb60aa14ba2903b148ceead04a83</cites><orcidid>0000-0002-2145-9262 ; 0000-0002-3614-049X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8491394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8491394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Isaac, Reneeta Sara</creatorcontrib><creatorcontrib>Mehta, Neelesh B.</creatorcontrib><title>Efficient Computation of Multivariate Rayleigh and Exponential Distributions</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description><![CDATA[We propose an efficient approach for the computation of cumulative distribution functions of <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> correlated Rayleigh or exponential random variables (RVs) for arbitrary covariance matrices, which arise in the design and analysis of many wireless systems. Compared to the approaches in the literature, it employs a fast and accurate randomized quasi-Monte Carlo method that markedly reduces the computational complexity by several orders of magnitude as <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> or the correlation among the RVs increases. Numerical results show that an order of magnitude larger values of <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> can now be computed for. Its application to the performance analysis of selection combining is also shown.]]></description><subject>Computational complexity</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>correlated fading</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>cumulative distribution function</subject><subject>Distribution functions</subject><subject>exponential</subject><subject>Monte Carlo simulation</subject><subject>Multivariate</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Rayleigh</subject><subject>Relays</subject><subject>Wireless communication</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouKx7F7wUPHedSb-So9T1AyqCKB7DtE01S7etSSruv7dlZefyzuF9ZuBh7BJhjQjypvjI1xxQrLnIEinlCVtwTHnIozg5Pe5Rds5Wzm1hmhSQo1iwYtM0pjK680He74bRkzd9F_RN8Dy23vyQNeR18Er7VpvPr4C6Otj8Dn03EYba4M44b005zpS7YGcNtU6v_nPJ3u83b_ljWLw8POW3RVhxiT6MQNeS12mWQZJhCQlhAzKrSRDVDWgtNMS6TIEI45K4hKjEWFRaUw0xiWjJrg93B9t_j9p5te1H200vFecIwEWMcwsOrcr2zlndqMGaHdm9QlCzNjVpU7M29a9tQq4OiNFaH-silhjJOPoDSABpZw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Isaac, Reneeta Sara</creator><creator>Mehta, Neelesh B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2145-9262</orcidid><orcidid>https://orcid.org/0000-0002-3614-049X</orcidid></search><sort><creationdate>20190401</creationdate><title>Efficient Computation of Multivariate Rayleigh and Exponential Distributions</title><author>Isaac, Reneeta Sara ; Mehta, Neelesh B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-30ed92d6770571b05a1f097da8aadf0ee8e04eb60aa14ba2903b148ceead04a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational complexity</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>correlated fading</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>cumulative distribution function</topic><topic>Distribution functions</topic><topic>exponential</topic><topic>Monte Carlo simulation</topic><topic>Multivariate</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Rayleigh</topic><topic>Relays</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaac, Reneeta Sara</creatorcontrib><creatorcontrib>Mehta, Neelesh B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Isaac, Reneeta Sara</au><au>Mehta, Neelesh B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Computation of Multivariate Rayleigh and Exponential Distributions</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>8</volume><issue>2</issue><spage>456</spage><epage>459</epage><pages>456-459</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract><![CDATA[We propose an efficient approach for the computation of cumulative distribution functions of <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> correlated Rayleigh or exponential random variables (RVs) for arbitrary covariance matrices, which arise in the design and analysis of many wireless systems. Compared to the approaches in the literature, it employs a fast and accurate randomized quasi-Monte Carlo method that markedly reduces the computational complexity by several orders of magnitude as <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> or the correlation among the RVs increases. Numerical results show that an order of magnitude larger values of <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> can now be computed for. Its application to the performance analysis of selection combining is also shown.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2018.2875999</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2145-9262</orcidid><orcidid>https://orcid.org/0000-0002-3614-049X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2019-04, Vol.8 (2), p.456-459
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_8491394
source IEEE Electronic Library (IEL)
subjects Computational complexity
Computational efficiency
Computer simulation
Convergence
correlated fading
Correlation
Covariance matrices
Covariance matrix
cumulative distribution function
Distribution functions
exponential
Monte Carlo simulation
Multivariate
Probability density function
Random variables
Rayleigh
Relays
Wireless communication
title Efficient Computation of Multivariate Rayleigh and Exponential Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Computation%20of%20Multivariate%20Rayleigh%20and%20Exponential%20Distributions&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Isaac,%20Reneeta%20Sara&rft.date=2019-04-01&rft.volume=8&rft.issue=2&rft.spage=456&rft.epage=459&rft.pages=456-459&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2018.2875999&rft_dat=%3Cproquest_RIE%3E2210028418%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210028418&rft_id=info:pmid/&rft_ieee_id=8491394&rfr_iscdi=true