Finite-Field Matrix Channels for Network Coding

In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-03, Vol.65 (3), p.1614-1625
Hauptverfasser: Blackburn, Simon R., Claridge, Jessica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1625
container_issue 3
container_start_page 1614
container_title IEEE transactions on information theory
container_volume 65
creator Blackburn, Simon R.
Claridge, Jessica
description In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.
doi_str_mv 10.1109/TIT.2018.2875763
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8490902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8490902</ieee_id><sourcerecordid>2184578128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKd3wUvBc7d8tslRitXB1Es9h7R5o5m1nUmH-t-bseHp_Xqe94EfQtcELwjBatmsmgXFRC6oLEVZsBM0I0KUuSoEP0UznE654lyeo4sYN2nkgtAZWtZ-8BPktYfeZk9mCv4nq97NMEAfMzeG7Bmm7zF8ZNVo_fB2ic6c6SNcHescvdb3TfWYr18eVtXdOu8YY1NucOdsS4mhjLvUp6y0gE5ZAMpFi4vCqbYDKm2npLDClkYoJgkx4Eyr2BzdHv5uw_i1gzjpzbgLQ4rUlEguSkmoTCp8UHVhjDGA09vgP0341QTrPRadsOg9Fn3Ekiw3B4sHgH-55AorTNkfiMdduw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184578128</pqid></control><display><type>article</type><title>Finite-Field Matrix Channels for Network Coding</title><source>IEEE Electronic Library (IEL)</source><creator>Blackburn, Simon R. ; Claridge, Jessica</creator><creatorcontrib>Blackburn, Simon R. ; Claridge, Jessica</creatorcontrib><description>In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2875763</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacity planning ; Channel capacity ; Channels ; Coding ; Limiting ; Linear codes ; Mathematical analysis ; Matrix channels ; Matrix methods ; Network coding ; Probability distribution ; Random errors</subject><ispartof>IEEE transactions on information theory, 2019-03, Vol.65 (3), p.1614-1625</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</citedby><cites>FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</cites><orcidid>0000-0003-0762-031X ; 0000-0002-8609-2369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8490902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8490902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blackburn, Simon R.</creatorcontrib><creatorcontrib>Claridge, Jessica</creatorcontrib><title>Finite-Field Matrix Channels for Network Coding</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.</description><subject>Capacity planning</subject><subject>Channel capacity</subject><subject>Channels</subject><subject>Coding</subject><subject>Limiting</subject><subject>Linear codes</subject><subject>Mathematical analysis</subject><subject>Matrix channels</subject><subject>Matrix methods</subject><subject>Network coding</subject><subject>Probability distribution</subject><subject>Random errors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYxoMoOKd3wUvBc7d8tslRitXB1Es9h7R5o5m1nUmH-t-bseHp_Xqe94EfQtcELwjBatmsmgXFRC6oLEVZsBM0I0KUuSoEP0UznE654lyeo4sYN2nkgtAZWtZ-8BPktYfeZk9mCv4nq97NMEAfMzeG7Bmm7zF8ZNVo_fB2ic6c6SNcHescvdb3TfWYr18eVtXdOu8YY1NucOdsS4mhjLvUp6y0gE5ZAMpFi4vCqbYDKm2npLDClkYoJgkx4Eyr2BzdHv5uw_i1gzjpzbgLQ4rUlEguSkmoTCp8UHVhjDGA09vgP0341QTrPRadsOg9Fn3Ekiw3B4sHgH-55AorTNkfiMdduw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Blackburn, Simon R.</creator><creator>Claridge, Jessica</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0762-031X</orcidid><orcidid>https://orcid.org/0000-0002-8609-2369</orcidid></search><sort><creationdate>20190301</creationdate><title>Finite-Field Matrix Channels for Network Coding</title><author>Blackburn, Simon R. ; Claridge, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacity planning</topic><topic>Channel capacity</topic><topic>Channels</topic><topic>Coding</topic><topic>Limiting</topic><topic>Linear codes</topic><topic>Mathematical analysis</topic><topic>Matrix channels</topic><topic>Matrix methods</topic><topic>Network coding</topic><topic>Probability distribution</topic><topic>Random errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackburn, Simon R.</creatorcontrib><creatorcontrib>Claridge, Jessica</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blackburn, Simon R.</au><au>Claridge, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Field Matrix Channels for Network Coding</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>65</volume><issue>3</issue><spage>1614</spage><epage>1625</epage><pages>1614-1625</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2875763</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0762-031X</orcidid><orcidid>https://orcid.org/0000-0002-8609-2369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2019-03, Vol.65 (3), p.1614-1625
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_8490902
source IEEE Electronic Library (IEL)
subjects Capacity planning
Channel capacity
Channels
Coding
Limiting
Linear codes
Mathematical analysis
Matrix channels
Matrix methods
Network coding
Probability distribution
Random errors
title Finite-Field Matrix Channels for Network Coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Field%20Matrix%20Channels%20for%20Network%20Coding&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Blackburn,%20Simon%20R.&rft.date=2019-03-01&rft.volume=65&rft.issue=3&rft.spage=1614&rft.epage=1625&rft.pages=1614-1625&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2875763&rft_dat=%3Cproquest_RIE%3E2184578128%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184578128&rft_id=info:pmid/&rft_ieee_id=8490902&rfr_iscdi=true