Finite-Field Matrix Channels for Network Coding
In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2019-03, Vol.65 (3), p.1614-1625 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1625 |
---|---|
container_issue | 3 |
container_start_page | 1614 |
container_title | IEEE transactions on information theory |
container_volume | 65 |
creator | Blackburn, Simon R. Claridge, Jessica |
description | In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size. |
doi_str_mv | 10.1109/TIT.2018.2875763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8490902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8490902</ieee_id><sourcerecordid>2184578128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKd3wUvBc7d8tslRitXB1Es9h7R5o5m1nUmH-t-bseHp_Xqe94EfQtcELwjBatmsmgXFRC6oLEVZsBM0I0KUuSoEP0UznE654lyeo4sYN2nkgtAZWtZ-8BPktYfeZk9mCv4nq97NMEAfMzeG7Bmm7zF8ZNVo_fB2ic6c6SNcHescvdb3TfWYr18eVtXdOu8YY1NucOdsS4mhjLvUp6y0gE5ZAMpFi4vCqbYDKm2npLDClkYoJgkx4Eyr2BzdHv5uw_i1gzjpzbgLQ4rUlEguSkmoTCp8UHVhjDGA09vgP0341QTrPRadsOg9Fn3Ekiw3B4sHgH-55AorTNkfiMdduw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184578128</pqid></control><display><type>article</type><title>Finite-Field Matrix Channels for Network Coding</title><source>IEEE Electronic Library (IEL)</source><creator>Blackburn, Simon R. ; Claridge, Jessica</creator><creatorcontrib>Blackburn, Simon R. ; Claridge, Jessica</creatorcontrib><description>In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2875763</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacity planning ; Channel capacity ; Channels ; Coding ; Limiting ; Linear codes ; Mathematical analysis ; Matrix channels ; Matrix methods ; Network coding ; Probability distribution ; Random errors</subject><ispartof>IEEE transactions on information theory, 2019-03, Vol.65 (3), p.1614-1625</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</citedby><cites>FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</cites><orcidid>0000-0003-0762-031X ; 0000-0002-8609-2369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8490902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8490902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blackburn, Simon R.</creatorcontrib><creatorcontrib>Claridge, Jessica</creatorcontrib><title>Finite-Field Matrix Channels for Network Coding</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.</description><subject>Capacity planning</subject><subject>Channel capacity</subject><subject>Channels</subject><subject>Coding</subject><subject>Limiting</subject><subject>Linear codes</subject><subject>Mathematical analysis</subject><subject>Matrix channels</subject><subject>Matrix methods</subject><subject>Network coding</subject><subject>Probability distribution</subject><subject>Random errors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYxoMoOKd3wUvBc7d8tslRitXB1Es9h7R5o5m1nUmH-t-bseHp_Xqe94EfQtcELwjBatmsmgXFRC6oLEVZsBM0I0KUuSoEP0UznE654lyeo4sYN2nkgtAZWtZ-8BPktYfeZk9mCv4nq97NMEAfMzeG7Bmm7zF8ZNVo_fB2ic6c6SNcHescvdb3TfWYr18eVtXdOu8YY1NucOdsS4mhjLvUp6y0gE5ZAMpFi4vCqbYDKm2npLDClkYoJgkx4Eyr2BzdHv5uw_i1gzjpzbgLQ4rUlEguSkmoTCp8UHVhjDGA09vgP0341QTrPRadsOg9Fn3Ekiw3B4sHgH-55AorTNkfiMdduw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Blackburn, Simon R.</creator><creator>Claridge, Jessica</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0762-031X</orcidid><orcidid>https://orcid.org/0000-0002-8609-2369</orcidid></search><sort><creationdate>20190301</creationdate><title>Finite-Field Matrix Channels for Network Coding</title><author>Blackburn, Simon R. ; Claridge, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a0cfdb21a234f0cf512cfdec9dee245b066f9bce28dc985d5d7a593811aefab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacity planning</topic><topic>Channel capacity</topic><topic>Channels</topic><topic>Coding</topic><topic>Limiting</topic><topic>Linear codes</topic><topic>Mathematical analysis</topic><topic>Matrix channels</topic><topic>Matrix methods</topic><topic>Network coding</topic><topic>Probability distribution</topic><topic>Random errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackburn, Simon R.</creatorcontrib><creatorcontrib>Claridge, Jessica</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blackburn, Simon R.</au><au>Claridge, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Field Matrix Channels for Network Coding</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>65</volume><issue>3</issue><spage>1614</spage><epage>1625</epage><pages>1614-1625</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly t random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al., which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2875763</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0762-031X</orcidid><orcidid>https://orcid.org/0000-0002-8609-2369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2019-03, Vol.65 (3), p.1614-1625 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_8490902 |
source | IEEE Electronic Library (IEL) |
subjects | Capacity planning Channel capacity Channels Coding Limiting Linear codes Mathematical analysis Matrix channels Matrix methods Network coding Probability distribution Random errors |
title | Finite-Field Matrix Channels for Network Coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Field%20Matrix%20Channels%20for%20Network%20Coding&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Blackburn,%20Simon%20R.&rft.date=2019-03-01&rft.volume=65&rft.issue=3&rft.spage=1614&rft.epage=1625&rft.pages=1614-1625&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2875763&rft_dat=%3Cproquest_RIE%3E2184578128%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184578128&rft_id=info:pmid/&rft_ieee_id=8490902&rfr_iscdi=true |