Shape and Positional Anisotropy Based Area Efficient Magnetic Quantum-Dot Cellular Automata Design Methodology for Full Adder Implementation
Magnetic quantum-dot cellular automata (MQCA) based computation started emerging as the Moore's law approaching towards its end. Number of nanomagnets and the area occupancy are major constraints in materializing this MQCA-based digital arithmetic circuit design. In this letter, we propose a de...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2018-11, Vol.17 (6), p.1303-1307 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1307 |
---|---|
container_issue | 6 |
container_start_page | 1303 |
container_title | IEEE transactions on nanotechnology |
container_volume | 17 |
creator | Sivasubramani, Santhosh Mattela, Venkat Pal, Chandrajit Islam, M. Saif Acharyya, Amit |
description | Magnetic quantum-dot cellular automata (MQCA) based computation started emerging as the Moore's law approaching towards its end. Number of nanomagnets and the area occupancy are major constraints in materializing this MQCA-based digital arithmetic circuit design. In this letter, we propose a design methodology and demonstrate the hybrid approach of using slant edged input and 45^\circ aligned nanomagnets for optimized binary full adder design. Asymmetric shape anisotropy nanomagnets pave the way for standalone inputs, whereas positional anisotropy reduces the signal loss in transmission of data and enables lossless information propagation. This complementary property of both shape and positional anisotropy leads to exploiting the energy minimization nature of nanomagnets, reducing the design footprint. Further, to enable the multipurpose scaling, horizontal and vertical layouts of the nanomagnetic computing design of full adder has been proposed. Our proposed nanomagnetic adder architecture leads to 28% reduction in the total number of nanomagnets compared to the state of the art design, leading to an area efficient architectural design. |
doi_str_mv | 10.1109/TNANO.2018.2874206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8490235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8490235</ieee_id><sourcerecordid>2132043293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b6a8b8d0d68adbff76fb698c0f378a31c1bb33829559c138713b5ab07667416f3</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhiMEEtcXgMUSc4ovieOMobSARAsIkNiik9huXSVxsJ2h78BDk1LEdP7hv-h8UXRJ8IQQnN-8L4vl84RiIiZUZAnF_CA6IXlCYoxFejjqlPGY0PTzODr1foMxyXgqTqLvtzX0CkEn0Yv1JhjbQYOKzngbnO236Ba8kqhwCtBMa1Mb1QW0gFWngqnR6wBdGNr4zgY0VU0zNOBQMQTbQgB0p7xZdWihwtpK29jVFmnr0HxoxgkplUOPbd-odqyE3fJ5dKSh8eri755FH_PZ-_Qhfnq-f5wWT3FN8zTEFQdRCYklFyArrTOuK56LGmuWCWCkJlXFmBi9aV4TJjLCqhQqnHGeJYRrdhZd73t7Z78G5UO5sYMbH_clJYzihNGcjS66d9XOeu-ULntnWnDbkuByR738pV7uqJd_1MfQ1T5klFL_AZHkmLKU_QAMmIAF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132043293</pqid></control><display><type>article</type><title>Shape and Positional Anisotropy Based Area Efficient Magnetic Quantum-Dot Cellular Automata Design Methodology for Full Adder Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Sivasubramani, Santhosh ; Mattela, Venkat ; Pal, Chandrajit ; Islam, M. Saif ; Acharyya, Amit</creator><creatorcontrib>Sivasubramani, Santhosh ; Mattela, Venkat ; Pal, Chandrajit ; Islam, M. Saif ; Acharyya, Amit</creatorcontrib><description>Magnetic quantum-dot cellular automata (MQCA) based computation started emerging as the Moore's law approaching towards its end. Number of nanomagnets and the area occupancy are major constraints in materializing this MQCA-based digital arithmetic circuit design. In this letter, we propose a design methodology and demonstrate the hybrid approach of using slant edged input and 45^\circ aligned nanomagnets for optimized binary full adder design. Asymmetric shape anisotropy nanomagnets pave the way for standalone inputs, whereas positional anisotropy reduces the signal loss in transmission of data and enables lossless information propagation. This complementary property of both shape and positional anisotropy leads to exploiting the energy minimization nature of nanomagnets, reducing the design footprint. Further, to enable the multipurpose scaling, horizontal and vertical layouts of the nanomagnetic computing design of full adder has been proposed. Our proposed nanomagnetic adder architecture leads to 28% reduction in the total number of nanomagnets compared to the state of the art design, leading to an area efficient architectural design.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2018.2874206</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adder ; Adders ; Adding circuits ; Anisotropic magnetoresistance ; Anisotropy ; Architecture ; area efficient ; Automata theory ; Cellular automata ; Circuit design ; Design engineering ; Design optimization ; Energy conservation ; Layout ; Logic gates ; Magnetic domains ; magnetic quantum-dot cellular automata (MQCA) ; Moore's law ; nanomagnetic computing ; optimization ; Perpendicular magnetic anisotropy ; positional anisotropy (P) ; Quantum dots ; shape anisotropy (S) ; State of the art</subject><ispartof>IEEE transactions on nanotechnology, 2018-11, Vol.17 (6), p.1303-1307</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b6a8b8d0d68adbff76fb698c0f378a31c1bb33829559c138713b5ab07667416f3</citedby><cites>FETCH-LOGICAL-c295t-b6a8b8d0d68adbff76fb698c0f378a31c1bb33829559c138713b5ab07667416f3</cites><orcidid>0000-0003-1667-0714 ; 0000-0003-1607-0989 ; 0000-0002-0576-8014 ; 0000-0002-5636-0676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8490235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8490235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sivasubramani, Santhosh</creatorcontrib><creatorcontrib>Mattela, Venkat</creatorcontrib><creatorcontrib>Pal, Chandrajit</creatorcontrib><creatorcontrib>Islam, M. Saif</creatorcontrib><creatorcontrib>Acharyya, Amit</creatorcontrib><title>Shape and Positional Anisotropy Based Area Efficient Magnetic Quantum-Dot Cellular Automata Design Methodology for Full Adder Implementation</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Magnetic quantum-dot cellular automata (MQCA) based computation started emerging as the Moore's law approaching towards its end. Number of nanomagnets and the area occupancy are major constraints in materializing this MQCA-based digital arithmetic circuit design. In this letter, we propose a design methodology and demonstrate the hybrid approach of using slant edged input and 45^\circ aligned nanomagnets for optimized binary full adder design. Asymmetric shape anisotropy nanomagnets pave the way for standalone inputs, whereas positional anisotropy reduces the signal loss in transmission of data and enables lossless information propagation. This complementary property of both shape and positional anisotropy leads to exploiting the energy minimization nature of nanomagnets, reducing the design footprint. Further, to enable the multipurpose scaling, horizontal and vertical layouts of the nanomagnetic computing design of full adder has been proposed. Our proposed nanomagnetic adder architecture leads to 28% reduction in the total number of nanomagnets compared to the state of the art design, leading to an area efficient architectural design.</description><subject>Adder</subject><subject>Adders</subject><subject>Adding circuits</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Architecture</subject><subject>area efficient</subject><subject>Automata theory</subject><subject>Cellular automata</subject><subject>Circuit design</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Energy conservation</subject><subject>Layout</subject><subject>Logic gates</subject><subject>Magnetic domains</subject><subject>magnetic quantum-dot cellular automata (MQCA)</subject><subject>Moore's law</subject><subject>nanomagnetic computing</subject><subject>optimization</subject><subject>Perpendicular magnetic anisotropy</subject><subject>positional anisotropy (P)</subject><subject>Quantum dots</subject><subject>shape anisotropy (S)</subject><subject>State of the art</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLtOwzAUhiMEEtcXgMUSc4ovieOMobSARAsIkNiik9huXSVxsJ2h78BDk1LEdP7hv-h8UXRJ8IQQnN-8L4vl84RiIiZUZAnF_CA6IXlCYoxFejjqlPGY0PTzODr1foMxyXgqTqLvtzX0CkEn0Yv1JhjbQYOKzngbnO236Ba8kqhwCtBMa1Mb1QW0gFWngqnR6wBdGNr4zgY0VU0zNOBQMQTbQgB0p7xZdWihwtpK29jVFmnr0HxoxgkplUOPbd-odqyE3fJ5dKSh8eri755FH_PZ-_Qhfnq-f5wWT3FN8zTEFQdRCYklFyArrTOuK56LGmuWCWCkJlXFmBi9aV4TJjLCqhQqnHGeJYRrdhZd73t7Z78G5UO5sYMbH_clJYzihNGcjS66d9XOeu-ULntnWnDbkuByR738pV7uqJd_1MfQ1T5klFL_AZHkmLKU_QAMmIAF</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Sivasubramani, Santhosh</creator><creator>Mattela, Venkat</creator><creator>Pal, Chandrajit</creator><creator>Islam, M. Saif</creator><creator>Acharyya, Amit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1667-0714</orcidid><orcidid>https://orcid.org/0000-0003-1607-0989</orcidid><orcidid>https://orcid.org/0000-0002-0576-8014</orcidid><orcidid>https://orcid.org/0000-0002-5636-0676</orcidid></search><sort><creationdate>201811</creationdate><title>Shape and Positional Anisotropy Based Area Efficient Magnetic Quantum-Dot Cellular Automata Design Methodology for Full Adder Implementation</title><author>Sivasubramani, Santhosh ; Mattela, Venkat ; Pal, Chandrajit ; Islam, M. Saif ; Acharyya, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b6a8b8d0d68adbff76fb698c0f378a31c1bb33829559c138713b5ab07667416f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adder</topic><topic>Adders</topic><topic>Adding circuits</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Architecture</topic><topic>area efficient</topic><topic>Automata theory</topic><topic>Cellular automata</topic><topic>Circuit design</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Energy conservation</topic><topic>Layout</topic><topic>Logic gates</topic><topic>Magnetic domains</topic><topic>magnetic quantum-dot cellular automata (MQCA)</topic><topic>Moore's law</topic><topic>nanomagnetic computing</topic><topic>optimization</topic><topic>Perpendicular magnetic anisotropy</topic><topic>positional anisotropy (P)</topic><topic>Quantum dots</topic><topic>shape anisotropy (S)</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivasubramani, Santhosh</creatorcontrib><creatorcontrib>Mattela, Venkat</creatorcontrib><creatorcontrib>Pal, Chandrajit</creatorcontrib><creatorcontrib>Islam, M. Saif</creatorcontrib><creatorcontrib>Acharyya, Amit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sivasubramani, Santhosh</au><au>Mattela, Venkat</au><au>Pal, Chandrajit</au><au>Islam, M. Saif</au><au>Acharyya, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape and Positional Anisotropy Based Area Efficient Magnetic Quantum-Dot Cellular Automata Design Methodology for Full Adder Implementation</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2018-11</date><risdate>2018</risdate><volume>17</volume><issue>6</issue><spage>1303</spage><epage>1307</epage><pages>1303-1307</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Magnetic quantum-dot cellular automata (MQCA) based computation started emerging as the Moore's law approaching towards its end. Number of nanomagnets and the area occupancy are major constraints in materializing this MQCA-based digital arithmetic circuit design. In this letter, we propose a design methodology and demonstrate the hybrid approach of using slant edged input and 45^\circ aligned nanomagnets for optimized binary full adder design. Asymmetric shape anisotropy nanomagnets pave the way for standalone inputs, whereas positional anisotropy reduces the signal loss in transmission of data and enables lossless information propagation. This complementary property of both shape and positional anisotropy leads to exploiting the energy minimization nature of nanomagnets, reducing the design footprint. Further, to enable the multipurpose scaling, horizontal and vertical layouts of the nanomagnetic computing design of full adder has been proposed. Our proposed nanomagnetic adder architecture leads to 28% reduction in the total number of nanomagnets compared to the state of the art design, leading to an area efficient architectural design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2018.2874206</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1667-0714</orcidid><orcidid>https://orcid.org/0000-0003-1607-0989</orcidid><orcidid>https://orcid.org/0000-0002-0576-8014</orcidid><orcidid>https://orcid.org/0000-0002-5636-0676</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2018-11, Vol.17 (6), p.1303-1307 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_ieee_primary_8490235 |
source | IEEE Electronic Library (IEL) |
subjects | Adder Adders Adding circuits Anisotropic magnetoresistance Anisotropy Architecture area efficient Automata theory Cellular automata Circuit design Design engineering Design optimization Energy conservation Layout Logic gates Magnetic domains magnetic quantum-dot cellular automata (MQCA) Moore's law nanomagnetic computing optimization Perpendicular magnetic anisotropy positional anisotropy (P) Quantum dots shape anisotropy (S) State of the art |
title | Shape and Positional Anisotropy Based Area Efficient Magnetic Quantum-Dot Cellular Automata Design Methodology for Full Adder Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20and%20Positional%20Anisotropy%20Based%20Area%20Efficient%20Magnetic%20Quantum-Dot%20Cellular%20Automata%20Design%20Methodology%20for%20Full%20Adder%20Implementation&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Sivasubramani,%20Santhosh&rft.date=2018-11&rft.volume=17&rft.issue=6&rft.spage=1303&rft.epage=1307&rft.pages=1303-1307&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2018.2874206&rft_dat=%3Cproquest_RIE%3E2132043293%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132043293&rft_id=info:pmid/&rft_ieee_id=8490235&rfr_iscdi=true |