On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach
Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2018-12, Vol.22 (12), p.2479-2482 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2482 |
---|---|
container_issue | 12 |
container_start_page | 2479 |
container_title | IEEE communications letters |
container_volume | 22 |
creator | Md. Fadlullah, Zubair Tang, Fengxiao Mao, Bomin Liu, Jiajia Kato, Nei |
description | Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method. |
doi_str_mv | 10.1109/LCOMM.2018.2875431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8489985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8489985</ieee_id><sourcerecordid>2154048213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhiMEEqXwArBYYk6xkzi22Uq5tFJKBwpr5DjHJSXEwXYEvD2GViznP8N_kb4oOid4QggWV8VstVxOEkz4JOGMZik5iEaEUh4n4RyGH3MRMyb4cXTi3BZjzBNKRpFddWjReWjbZgOdR2srtW4UmpnOW9MibSwqpN1A_KRkC2gOHqwJVjCDQ4_gP419c9doil5kOwBaSm-br_hGOqjRLUCPCpC2a7oNmva9NVK9nkZHWrYOzvY6jp7v79azeVysHhazaRGrNCc-TnVOKdVCVlKntapYlWUVxglJWc1wxqlijLJcyTQjNa01SQRRSotMM51LUaXj6HLXG2Y_BnC-3JrBdmGyTAjNQkXoCq5k51LWOGdBl71t3qX9Lgkuf9mWf2zLX7blnm0IXexCDQD8B3jGheA0_QGvOHXq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154048213</pqid></control><display><type>article</type><title>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</title><source>IEEE Xplore</source><creator>Md. Fadlullah, Zubair ; Tang, Fengxiao ; Mao, Bomin ; Liu, Jiajia ; Kato, Nei</creator><creatorcontrib>Md. Fadlullah, Zubair ; Tang, Fengxiao ; Mao, Bomin ; Liu, Jiajia ; Kato, Nei</creatorcontrib><description>Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2875431</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Belief networks ; Communications traffic ; Complexity ; Computation ; Computational complexity ; Computer simulation ; Control algorithms ; Control theory ; convolutional neural network (CNN) ; Convolutional neural networks ; deep belief network (DBN) ; Deep learning ; Heterogeneous networks ; Machine learning ; non-supervised learning ; packets forwarding ; routing protocol ; Routing protocols ; Semisupervised learning ; Telecommunication traffic ; Traffic control ; Traffic engineering ; Training data</subject><ispartof>IEEE communications letters, 2018-12, Vol.22 (12), p.2479-2482</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</citedby><cites>FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</cites><orcidid>0000-0001-8769-302X ; 0000-0003-2414-4802 ; 0000-0002-4785-2425 ; 0000-0002-9920-4956 ; 0000-0001-7780-5972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8489985$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8489985$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Md. Fadlullah, Zubair</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Liu, Jiajia</creatorcontrib><creatorcontrib>Kato, Nei</creatorcontrib><title>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method.</description><subject>Artificial neural networks</subject><subject>Belief networks</subject><subject>Communications traffic</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>deep belief network (DBN)</subject><subject>Deep learning</subject><subject>Heterogeneous networks</subject><subject>Machine learning</subject><subject>non-supervised learning</subject><subject>packets forwarding</subject><subject>routing protocol</subject><subject>Routing protocols</subject><subject>Semisupervised learning</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Training data</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLtOwzAUhiMEEqXwArBYYk6xkzi22Uq5tFJKBwpr5DjHJSXEwXYEvD2GViznP8N_kb4oOid4QggWV8VstVxOEkz4JOGMZik5iEaEUh4n4RyGH3MRMyb4cXTi3BZjzBNKRpFddWjReWjbZgOdR2srtW4UmpnOW9MibSwqpN1A_KRkC2gOHqwJVjCDQ4_gP419c9doil5kOwBaSm-br_hGOqjRLUCPCpC2a7oNmva9NVK9nkZHWrYOzvY6jp7v79azeVysHhazaRGrNCc-TnVOKdVCVlKntapYlWUVxglJWc1wxqlijLJcyTQjNa01SQRRSotMM51LUaXj6HLXG2Y_BnC-3JrBdmGyTAjNQkXoCq5k51LWOGdBl71t3qX9Lgkuf9mWf2zLX7blnm0IXexCDQD8B3jGheA0_QGvOHXq</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Md. Fadlullah, Zubair</creator><creator>Tang, Fengxiao</creator><creator>Mao, Bomin</creator><creator>Liu, Jiajia</creator><creator>Kato, Nei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8769-302X</orcidid><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-4785-2425</orcidid><orcidid>https://orcid.org/0000-0002-9920-4956</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid></search><sort><creationdate>20181201</creationdate><title>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</title><author>Md. Fadlullah, Zubair ; Tang, Fengxiao ; Mao, Bomin ; Liu, Jiajia ; Kato, Nei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Belief networks</topic><topic>Communications traffic</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>deep belief network (DBN)</topic><topic>Deep learning</topic><topic>Heterogeneous networks</topic><topic>Machine learning</topic><topic>non-supervised learning</topic><topic>packets forwarding</topic><topic>routing protocol</topic><topic>Routing protocols</topic><topic>Semisupervised learning</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Md. Fadlullah, Zubair</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Liu, Jiajia</creatorcontrib><creatorcontrib>Kato, Nei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Md. Fadlullah, Zubair</au><au>Tang, Fengxiao</au><au>Mao, Bomin</au><au>Liu, Jiajia</au><au>Kato, Nei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>22</volume><issue>12</issue><spage>2479</spage><epage>2482</epage><pages>2479-2482</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2875431</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8769-302X</orcidid><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-4785-2425</orcidid><orcidid>https://orcid.org/0000-0002-9920-4956</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2018-12, Vol.22 (12), p.2479-2482 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_8489985 |
source | IEEE Xplore |
subjects | Artificial neural networks Belief networks Communications traffic Complexity Computation Computational complexity Computer simulation Control algorithms Control theory convolutional neural network (CNN) Convolutional neural networks deep belief network (DBN) Deep learning Heterogeneous networks Machine learning non-supervised learning packets forwarding routing protocol Routing protocols Semisupervised learning Telecommunication traffic Traffic control Traffic engineering Training data |
title | On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Intelligent%20Traffic%20Control%20for%20Large-Scale%20Heterogeneous%20Networks:%20A%20Value%20Matrix-Based%20Deep%20Learning%20Approach&rft.jtitle=IEEE%20communications%20letters&rft.au=Md.%20Fadlullah,%20Zubair&rft.date=2018-12-01&rft.volume=22&rft.issue=12&rft.spage=2479&rft.epage=2482&rft.pages=2479-2482&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2875431&rft_dat=%3Cproquest_RIE%3E2154048213%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154048213&rft_id=info:pmid/&rft_ieee_id=8489985&rfr_iscdi=true |