On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach

Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-12, Vol.22 (12), p.2479-2482
Hauptverfasser: Md. Fadlullah, Zubair, Tang, Fengxiao, Mao, Bomin, Liu, Jiajia, Kato, Nei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2482
container_issue 12
container_start_page 2479
container_title IEEE communications letters
container_volume 22
creator Md. Fadlullah, Zubair
Tang, Fengxiao
Mao, Bomin
Liu, Jiajia
Kato, Nei
description Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method.
doi_str_mv 10.1109/LCOMM.2018.2875431
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8489985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8489985</ieee_id><sourcerecordid>2154048213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhiMEEqXwArBYYk6xkzi22Uq5tFJKBwpr5DjHJSXEwXYEvD2GViznP8N_kb4oOid4QggWV8VstVxOEkz4JOGMZik5iEaEUh4n4RyGH3MRMyb4cXTi3BZjzBNKRpFddWjReWjbZgOdR2srtW4UmpnOW9MibSwqpN1A_KRkC2gOHqwJVjCDQ4_gP419c9doil5kOwBaSm-br_hGOqjRLUCPCpC2a7oNmva9NVK9nkZHWrYOzvY6jp7v79azeVysHhazaRGrNCc-TnVOKdVCVlKntapYlWUVxglJWc1wxqlijLJcyTQjNa01SQRRSotMM51LUaXj6HLXG2Y_BnC-3JrBdmGyTAjNQkXoCq5k51LWOGdBl71t3qX9Lgkuf9mWf2zLX7blnm0IXexCDQD8B3jGheA0_QGvOHXq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154048213</pqid></control><display><type>article</type><title>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</title><source>IEEE Xplore</source><creator>Md. Fadlullah, Zubair ; Tang, Fengxiao ; Mao, Bomin ; Liu, Jiajia ; Kato, Nei</creator><creatorcontrib>Md. Fadlullah, Zubair ; Tang, Fengxiao ; Mao, Bomin ; Liu, Jiajia ; Kato, Nei</creatorcontrib><description>Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2875431</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Belief networks ; Communications traffic ; Complexity ; Computation ; Computational complexity ; Computer simulation ; Control algorithms ; Control theory ; convolutional neural network (CNN) ; Convolutional neural networks ; deep belief network (DBN) ; Deep learning ; Heterogeneous networks ; Machine learning ; non-supervised learning ; packets forwarding ; routing protocol ; Routing protocols ; Semisupervised learning ; Telecommunication traffic ; Traffic control ; Traffic engineering ; Training data</subject><ispartof>IEEE communications letters, 2018-12, Vol.22 (12), p.2479-2482</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</citedby><cites>FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</cites><orcidid>0000-0001-8769-302X ; 0000-0003-2414-4802 ; 0000-0002-4785-2425 ; 0000-0002-9920-4956 ; 0000-0001-7780-5972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8489985$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8489985$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Md. Fadlullah, Zubair</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Liu, Jiajia</creatorcontrib><creatorcontrib>Kato, Nei</creatorcontrib><title>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method.</description><subject>Artificial neural networks</subject><subject>Belief networks</subject><subject>Communications traffic</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>deep belief network (DBN)</subject><subject>Deep learning</subject><subject>Heterogeneous networks</subject><subject>Machine learning</subject><subject>non-supervised learning</subject><subject>packets forwarding</subject><subject>routing protocol</subject><subject>Routing protocols</subject><subject>Semisupervised learning</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Training data</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLtOwzAUhiMEEqXwArBYYk6xkzi22Uq5tFJKBwpr5DjHJSXEwXYEvD2GViznP8N_kb4oOid4QggWV8VstVxOEkz4JOGMZik5iEaEUh4n4RyGH3MRMyb4cXTi3BZjzBNKRpFddWjReWjbZgOdR2srtW4UmpnOW9MibSwqpN1A_KRkC2gOHqwJVjCDQ4_gP419c9doil5kOwBaSm-br_hGOqjRLUCPCpC2a7oNmva9NVK9nkZHWrYOzvY6jp7v79azeVysHhazaRGrNCc-TnVOKdVCVlKntapYlWUVxglJWc1wxqlijLJcyTQjNa01SQRRSotMM51LUaXj6HLXG2Y_BnC-3JrBdmGyTAjNQkXoCq5k51LWOGdBl71t3qX9Lgkuf9mWf2zLX7blnm0IXexCDQD8B3jGheA0_QGvOHXq</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Md. Fadlullah, Zubair</creator><creator>Tang, Fengxiao</creator><creator>Mao, Bomin</creator><creator>Liu, Jiajia</creator><creator>Kato, Nei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8769-302X</orcidid><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-4785-2425</orcidid><orcidid>https://orcid.org/0000-0002-9920-4956</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid></search><sort><creationdate>20181201</creationdate><title>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</title><author>Md. Fadlullah, Zubair ; Tang, Fengxiao ; Mao, Bomin ; Liu, Jiajia ; Kato, Nei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3f6555f9abaf3dcb7b44b002137d70485c77576ca341d5df1291ccf94f7f6a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Belief networks</topic><topic>Communications traffic</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>deep belief network (DBN)</topic><topic>Deep learning</topic><topic>Heterogeneous networks</topic><topic>Machine learning</topic><topic>non-supervised learning</topic><topic>packets forwarding</topic><topic>routing protocol</topic><topic>Routing protocols</topic><topic>Semisupervised learning</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Md. Fadlullah, Zubair</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Liu, Jiajia</creatorcontrib><creatorcontrib>Kato, Nei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Md. Fadlullah, Zubair</au><au>Tang, Fengxiao</au><au>Mao, Bomin</au><au>Liu, Jiajia</au><au>Kato, Nei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>22</volume><issue>12</issue><spage>2479</spage><epage>2482</epage><pages>2479-2482</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Recently, deep learning has emerged as an attractive technique to intelligently control network traffic. However, the contemporary researches only focused on small-/medium-scale networks, since the computational complexity of deep learning based traffic control algorithm significantly increases with the network size. In this paper, we address this issue and envision a reward-based deep learning structure, which jointly employs deep convolutional neural network (CNN) and a deep belief network (DBN) to predict the traffic load value matrix and construct the final action matrix, respectively. In our proposal, the deep CNN is used to construct the award prediction network, while the deep DBN constructs the action decision network. Thus, the final action space is simplified to a next destination action matrix, and the computational complexity is substantially reduced. Computer-based simulation results demonstrate that our proposal is able to achieve an improved performance in the large-scale network in terms of the packets loss rate and throughput in contrast with those in the conventional routing method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2875431</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8769-302X</orcidid><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-4785-2425</orcidid><orcidid>https://orcid.org/0000-0002-9920-4956</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2018-12, Vol.22 (12), p.2479-2482
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_8489985
source IEEE Xplore
subjects Artificial neural networks
Belief networks
Communications traffic
Complexity
Computation
Computational complexity
Computer simulation
Control algorithms
Control theory
convolutional neural network (CNN)
Convolutional neural networks
deep belief network (DBN)
Deep learning
Heterogeneous networks
Machine learning
non-supervised learning
packets forwarding
routing protocol
Routing protocols
Semisupervised learning
Telecommunication traffic
Traffic control
Traffic engineering
Training data
title On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Intelligent%20Traffic%20Control%20for%20Large-Scale%20Heterogeneous%20Networks:%20A%20Value%20Matrix-Based%20Deep%20Learning%20Approach&rft.jtitle=IEEE%20communications%20letters&rft.au=Md.%20Fadlullah,%20Zubair&rft.date=2018-12-01&rft.volume=22&rft.issue=12&rft.spage=2479&rft.epage=2482&rft.pages=2479-2482&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2875431&rft_dat=%3Cproquest_RIE%3E2154048213%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154048213&rft_id=info:pmid/&rft_ieee_id=8489985&rfr_iscdi=true