Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing
With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2019-06, Vol.6 (3), p.4150-4161 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4161 |
---|---|
container_issue | 3 |
container_start_page | 4150 |
container_title | IEEE internet of things journal |
container_volume | 6 |
creator | Zhu, Chao Tao, Jin Pastor, Giancarlo Xiao, Yu Ji, Yusheng Zhou, Quan Li, Yong Yla-Jaaski, Antti |
description | With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%. |
doi_str_mv | 10.1109/JIOT.2018.2875520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8489874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8489874</ieee_id><sourcerecordid>2244345517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsGh_gHhZ8Ny6OztJNt5KsVopFqF6XTabad2aZmM-DvXXm9IinmYO7_MO8zB2I8VYSpHev8yXqzEIqcegkygCccYGoCAZYRzD-b_9kg2bZiuE6LFIpvGAvc5CER74wrZUuj23Zc7fOlv4ds-XVet3_odyvrLNF58URXC29aHkvuQf9OldV9iaz8KGT8Ou6lpfbq7ZxdoWDQ1P84q9zx5X0-fRYvk0n04WI4cC2hHkTgrCjPLcKe0ydBESAsZoM-ofUZmDKEnl2iKlpMCiFjoWcQ7aqVyBumJ3x96qDt8dNa3Zhq4u-5MGAFFhFMmkT8ljytWhaWpam6r2O1vvjRTmYM4czJmDOXMy1zO3R8YT0V9eo051guoXiA1o3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244345517</pqid></control><display><type>article</type><title>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Chao ; Tao, Jin ; Pastor, Giancarlo ; Xiao, Yu ; Ji, Yusheng ; Zhou, Quan ; Li, Yong ; Yla-Jaaski, Antti</creator><creatorcontrib>Zhu, Chao ; Tao, Jin ; Pastor, Giancarlo ; Xiao, Yu ; Ji, Yusheng ; Zhou, Quan ; Li, Yong ; Yla-Jaaski, Antti</creatorcontrib><description>With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2875520</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binary particle swarm optimization (BPSO) ; Cloud computing ; computation offloading ; Computer simulation ; Dynamic scheduling ; dynamic task allocation (DTA) ; Edge computing ; Lane changing ; Linear programming ; linear programming (LP) ; Nodes ; Object recognition ; Optimization ; Particle swarm optimization ; Polynomials ; Quality ; Real time ; Resource management ; Situational awareness ; Streaming media ; Task analysis ; Vehicle dynamics ; vehicular fog computing (VFC) ; Video transmission</subject><ispartof>IEEE internet of things journal, 2019-06, Vol.6 (3), p.4150-4161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</citedby><cites>FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</cites><orcidid>0000-0002-4517-3779 ; 0000-0001-5617-1659 ; 0000-0002-3819-3878 ; 0000-0003-4364-8491 ; 0000-0002-2069-1721 ; 0000-0003-3537-6414 ; 0000-0002-9467-5185 ; 0000-0003-1066-1809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8489874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8489874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Tao, Jin</creatorcontrib><creatorcontrib>Pastor, Giancarlo</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Ji, Yusheng</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Yla-Jaaski, Antti</creatorcontrib><title>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%.</description><subject>Binary particle swarm optimization (BPSO)</subject><subject>Cloud computing</subject><subject>computation offloading</subject><subject>Computer simulation</subject><subject>Dynamic scheduling</subject><subject>dynamic task allocation (DTA)</subject><subject>Edge computing</subject><subject>Lane changing</subject><subject>Linear programming</subject><subject>linear programming (LP)</subject><subject>Nodes</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Polynomials</subject><subject>Quality</subject><subject>Real time</subject><subject>Resource management</subject><subject>Situational awareness</subject><subject>Streaming media</subject><subject>Task analysis</subject><subject>Vehicle dynamics</subject><subject>vehicular fog computing (VFC)</subject><subject>Video transmission</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsGh_gHhZ8Ny6OztJNt5KsVopFqF6XTabad2aZmM-DvXXm9IinmYO7_MO8zB2I8VYSpHev8yXqzEIqcegkygCccYGoCAZYRzD-b_9kg2bZiuE6LFIpvGAvc5CER74wrZUuj23Zc7fOlv4ds-XVet3_odyvrLNF58URXC29aHkvuQf9OldV9iaz8KGT8Ou6lpfbq7ZxdoWDQ1P84q9zx5X0-fRYvk0n04WI4cC2hHkTgrCjPLcKe0ydBESAsZoM-ofUZmDKEnl2iKlpMCiFjoWcQ7aqVyBumJ3x96qDt8dNa3Zhq4u-5MGAFFhFMmkT8ljytWhaWpam6r2O1vvjRTmYM4czJmDOXMy1zO3R8YT0V9eo051guoXiA1o3A</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhu, Chao</creator><creator>Tao, Jin</creator><creator>Pastor, Giancarlo</creator><creator>Xiao, Yu</creator><creator>Ji, Yusheng</creator><creator>Zhou, Quan</creator><creator>Li, Yong</creator><creator>Yla-Jaaski, Antti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4517-3779</orcidid><orcidid>https://orcid.org/0000-0001-5617-1659</orcidid><orcidid>https://orcid.org/0000-0002-3819-3878</orcidid><orcidid>https://orcid.org/0000-0003-4364-8491</orcidid><orcidid>https://orcid.org/0000-0002-2069-1721</orcidid><orcidid>https://orcid.org/0000-0003-3537-6414</orcidid><orcidid>https://orcid.org/0000-0002-9467-5185</orcidid><orcidid>https://orcid.org/0000-0003-1066-1809</orcidid></search><sort><creationdate>20190601</creationdate><title>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</title><author>Zhu, Chao ; Tao, Jin ; Pastor, Giancarlo ; Xiao, Yu ; Ji, Yusheng ; Zhou, Quan ; Li, Yong ; Yla-Jaaski, Antti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binary particle swarm optimization (BPSO)</topic><topic>Cloud computing</topic><topic>computation offloading</topic><topic>Computer simulation</topic><topic>Dynamic scheduling</topic><topic>dynamic task allocation (DTA)</topic><topic>Edge computing</topic><topic>Lane changing</topic><topic>Linear programming</topic><topic>linear programming (LP)</topic><topic>Nodes</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Polynomials</topic><topic>Quality</topic><topic>Real time</topic><topic>Resource management</topic><topic>Situational awareness</topic><topic>Streaming media</topic><topic>Task analysis</topic><topic>Vehicle dynamics</topic><topic>vehicular fog computing (VFC)</topic><topic>Video transmission</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Tao, Jin</creatorcontrib><creatorcontrib>Pastor, Giancarlo</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Ji, Yusheng</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Yla-Jaaski, Antti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Chao</au><au>Tao, Jin</au><au>Pastor, Giancarlo</au><au>Xiao, Yu</au><au>Ji, Yusheng</au><au>Zhou, Quan</au><au>Li, Yong</au><au>Yla-Jaaski, Antti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>6</volume><issue>3</issue><spage>4150</spage><epage>4161</epage><pages>4150-4161</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2875520</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4517-3779</orcidid><orcidid>https://orcid.org/0000-0001-5617-1659</orcidid><orcidid>https://orcid.org/0000-0002-3819-3878</orcidid><orcidid>https://orcid.org/0000-0003-4364-8491</orcidid><orcidid>https://orcid.org/0000-0002-2069-1721</orcidid><orcidid>https://orcid.org/0000-0003-3537-6414</orcidid><orcidid>https://orcid.org/0000-0002-9467-5185</orcidid><orcidid>https://orcid.org/0000-0003-1066-1809</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2019-06, Vol.6 (3), p.4150-4161 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_8489874 |
source | IEEE Electronic Library (IEL) |
subjects | Binary particle swarm optimization (BPSO) Cloud computing computation offloading Computer simulation Dynamic scheduling dynamic task allocation (DTA) Edge computing Lane changing Linear programming linear programming (LP) Nodes Object recognition Optimization Particle swarm optimization Polynomials Quality Real time Resource management Situational awareness Streaming media Task analysis Vehicle dynamics vehicular fog computing (VFC) Video transmission |
title | Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folo:%20Latency%20and%20Quality%20Optimized%20Task%20Allocation%20in%20Vehicular%20Fog%20Computing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhu,%20Chao&rft.date=2019-06-01&rft.volume=6&rft.issue=3&rft.spage=4150&rft.epage=4161&rft.pages=4150-4161&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2875520&rft_dat=%3Cproquest_RIE%3E2244345517%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244345517&rft_id=info:pmid/&rft_ieee_id=8489874&rfr_iscdi=true |