Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing

With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2019-06, Vol.6 (3), p.4150-4161
Hauptverfasser: Zhu, Chao, Tao, Jin, Pastor, Giancarlo, Xiao, Yu, Ji, Yusheng, Zhou, Quan, Li, Yong, Yla-Jaaski, Antti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4161
container_issue 3
container_start_page 4150
container_title IEEE internet of things journal
container_volume 6
creator Zhu, Chao
Tao, Jin
Pastor, Giancarlo
Xiao, Yu
Ji, Yusheng
Zhou, Quan
Li, Yong
Yla-Jaaski, Antti
description With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%.
doi_str_mv 10.1109/JIOT.2018.2875520
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8489874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8489874</ieee_id><sourcerecordid>2244345517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsGh_gHhZ8Ny6OztJNt5KsVopFqF6XTabad2aZmM-DvXXm9IinmYO7_MO8zB2I8VYSpHev8yXqzEIqcegkygCccYGoCAZYRzD-b_9kg2bZiuE6LFIpvGAvc5CER74wrZUuj23Zc7fOlv4ds-XVet3_odyvrLNF58URXC29aHkvuQf9OldV9iaz8KGT8Ou6lpfbq7ZxdoWDQ1P84q9zx5X0-fRYvk0n04WI4cC2hHkTgrCjPLcKe0ydBESAsZoM-ofUZmDKEnl2iKlpMCiFjoWcQ7aqVyBumJ3x96qDt8dNa3Zhq4u-5MGAFFhFMmkT8ljytWhaWpam6r2O1vvjRTmYM4czJmDOXMy1zO3R8YT0V9eo051guoXiA1o3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244345517</pqid></control><display><type>article</type><title>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Chao ; Tao, Jin ; Pastor, Giancarlo ; Xiao, Yu ; Ji, Yusheng ; Zhou, Quan ; Li, Yong ; Yla-Jaaski, Antti</creator><creatorcontrib>Zhu, Chao ; Tao, Jin ; Pastor, Giancarlo ; Xiao, Yu ; Ji, Yusheng ; Zhou, Quan ; Li, Yong ; Yla-Jaaski, Antti</creatorcontrib><description>With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2875520</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binary particle swarm optimization (BPSO) ; Cloud computing ; computation offloading ; Computer simulation ; Dynamic scheduling ; dynamic task allocation (DTA) ; Edge computing ; Lane changing ; Linear programming ; linear programming (LP) ; Nodes ; Object recognition ; Optimization ; Particle swarm optimization ; Polynomials ; Quality ; Real time ; Resource management ; Situational awareness ; Streaming media ; Task analysis ; Vehicle dynamics ; vehicular fog computing (VFC) ; Video transmission</subject><ispartof>IEEE internet of things journal, 2019-06, Vol.6 (3), p.4150-4161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</citedby><cites>FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</cites><orcidid>0000-0002-4517-3779 ; 0000-0001-5617-1659 ; 0000-0002-3819-3878 ; 0000-0003-4364-8491 ; 0000-0002-2069-1721 ; 0000-0003-3537-6414 ; 0000-0002-9467-5185 ; 0000-0003-1066-1809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8489874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8489874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Tao, Jin</creatorcontrib><creatorcontrib>Pastor, Giancarlo</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Ji, Yusheng</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Yla-Jaaski, Antti</creatorcontrib><title>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%.</description><subject>Binary particle swarm optimization (BPSO)</subject><subject>Cloud computing</subject><subject>computation offloading</subject><subject>Computer simulation</subject><subject>Dynamic scheduling</subject><subject>dynamic task allocation (DTA)</subject><subject>Edge computing</subject><subject>Lane changing</subject><subject>Linear programming</subject><subject>linear programming (LP)</subject><subject>Nodes</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Polynomials</subject><subject>Quality</subject><subject>Real time</subject><subject>Resource management</subject><subject>Situational awareness</subject><subject>Streaming media</subject><subject>Task analysis</subject><subject>Vehicle dynamics</subject><subject>vehicular fog computing (VFC)</subject><subject>Video transmission</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsGh_gHhZ8Ny6OztJNt5KsVopFqF6XTabad2aZmM-DvXXm9IinmYO7_MO8zB2I8VYSpHev8yXqzEIqcegkygCccYGoCAZYRzD-b_9kg2bZiuE6LFIpvGAvc5CER74wrZUuj23Zc7fOlv4ds-XVet3_odyvrLNF58URXC29aHkvuQf9OldV9iaz8KGT8Ou6lpfbq7ZxdoWDQ1P84q9zx5X0-fRYvk0n04WI4cC2hHkTgrCjPLcKe0ydBESAsZoM-ofUZmDKEnl2iKlpMCiFjoWcQ7aqVyBumJ3x96qDt8dNa3Zhq4u-5MGAFFhFMmkT8ljytWhaWpam6r2O1vvjRTmYM4czJmDOXMy1zO3R8YT0V9eo051guoXiA1o3A</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhu, Chao</creator><creator>Tao, Jin</creator><creator>Pastor, Giancarlo</creator><creator>Xiao, Yu</creator><creator>Ji, Yusheng</creator><creator>Zhou, Quan</creator><creator>Li, Yong</creator><creator>Yla-Jaaski, Antti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4517-3779</orcidid><orcidid>https://orcid.org/0000-0001-5617-1659</orcidid><orcidid>https://orcid.org/0000-0002-3819-3878</orcidid><orcidid>https://orcid.org/0000-0003-4364-8491</orcidid><orcidid>https://orcid.org/0000-0002-2069-1721</orcidid><orcidid>https://orcid.org/0000-0003-3537-6414</orcidid><orcidid>https://orcid.org/0000-0002-9467-5185</orcidid><orcidid>https://orcid.org/0000-0003-1066-1809</orcidid></search><sort><creationdate>20190601</creationdate><title>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</title><author>Zhu, Chao ; Tao, Jin ; Pastor, Giancarlo ; Xiao, Yu ; Ji, Yusheng ; Zhou, Quan ; Li, Yong ; Yla-Jaaski, Antti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2dc10e4beddc38cb4c54e42464abe2013bc25791fa4e9e32a4808606d28c3d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binary particle swarm optimization (BPSO)</topic><topic>Cloud computing</topic><topic>computation offloading</topic><topic>Computer simulation</topic><topic>Dynamic scheduling</topic><topic>dynamic task allocation (DTA)</topic><topic>Edge computing</topic><topic>Lane changing</topic><topic>Linear programming</topic><topic>linear programming (LP)</topic><topic>Nodes</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Polynomials</topic><topic>Quality</topic><topic>Real time</topic><topic>Resource management</topic><topic>Situational awareness</topic><topic>Streaming media</topic><topic>Task analysis</topic><topic>Vehicle dynamics</topic><topic>vehicular fog computing (VFC)</topic><topic>Video transmission</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Tao, Jin</creatorcontrib><creatorcontrib>Pastor, Giancarlo</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Ji, Yusheng</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Yla-Jaaski, Antti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Chao</au><au>Tao, Jin</au><au>Pastor, Giancarlo</au><au>Xiao, Yu</au><au>Ji, Yusheng</au><au>Zhou, Quan</au><au>Li, Yong</au><au>Yla-Jaaski, Antti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>6</volume><issue>3</issue><spage>4150</spage><epage>4161</epage><pages>4150-4161</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the emerging vehicular applications, such as real-time situational awareness and cooperative lane change, there exist huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes Folo, a novel solution for latency and quality optimized task allocation in vehicular fog computing (VFC). Folo is designed to support the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a joint optimization problem. This task allocation in VFC is known as a nondeterministic polynomial-time hard problem. In this paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a tradeoff is maintained between the service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation framework using linear programming-based optimization and binary particle swarm optimization. To assess the effectiveness of Folo, we simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality loss by up to 56%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2875520</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4517-3779</orcidid><orcidid>https://orcid.org/0000-0001-5617-1659</orcidid><orcidid>https://orcid.org/0000-0002-3819-3878</orcidid><orcidid>https://orcid.org/0000-0003-4364-8491</orcidid><orcidid>https://orcid.org/0000-0002-2069-1721</orcidid><orcidid>https://orcid.org/0000-0003-3537-6414</orcidid><orcidid>https://orcid.org/0000-0002-9467-5185</orcidid><orcidid>https://orcid.org/0000-0003-1066-1809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2019-06, Vol.6 (3), p.4150-4161
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_8489874
source IEEE Electronic Library (IEL)
subjects Binary particle swarm optimization (BPSO)
Cloud computing
computation offloading
Computer simulation
Dynamic scheduling
dynamic task allocation (DTA)
Edge computing
Lane changing
Linear programming
linear programming (LP)
Nodes
Object recognition
Optimization
Particle swarm optimization
Polynomials
Quality
Real time
Resource management
Situational awareness
Streaming media
Task analysis
Vehicle dynamics
vehicular fog computing (VFC)
Video transmission
title Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folo:%20Latency%20and%20Quality%20Optimized%20Task%20Allocation%20in%20Vehicular%20Fog%20Computing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhu,%20Chao&rft.date=2019-06-01&rft.volume=6&rft.issue=3&rft.spage=4150&rft.epage=4161&rft.pages=4150-4161&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2875520&rft_dat=%3Cproquest_RIE%3E2244345517%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244345517&rft_id=info:pmid/&rft_ieee_id=8489874&rfr_iscdi=true