Voltage-Boosted Current-Mode Wireless Power Receiver for Directly Charging a Low-Voltage Battery in Implantable Medical Systems

In this paper, a resonant current-mode receiver is studied to charge low-voltage batteries wirelessly for supplying medical implantable systems. To increase efficiency, the root-mean-square (rms) current in the LC tank of the receiver (RX) is reduced by using a voltage-boosted current-mode (VBCM) re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-11, Vol.66 (11), p.8860-8865
Hauptverfasser: Lee, Sang-Han, Bang, Jun-Suk, Yoon, Kye-Seok, Gwon, Hui-Dong, Kim, Sang-Won, Cho, In-Kui, Hong, Sung-Wan, Cho, Gyu-Hyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8865
container_issue 11
container_start_page 8860
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator Lee, Sang-Han
Bang, Jun-Suk
Yoon, Kye-Seok
Gwon, Hui-Dong
Kim, Sang-Won
Cho, In-Kui
Hong, Sung-Wan
Cho, Gyu-Hyeong
description In this paper, a resonant current-mode receiver is studied to charge low-voltage batteries wirelessly for supplying medical implantable systems. To increase efficiency, the root-mean-square (rms) current in the LC tank of the receiver (RX) is reduced by using a voltage-boosted current-mode (VBCM) receiver. This receiver combines the conventional current-mode receiver with a switched-capacitor converter to boost the voltage instantaneously at the switching node (V_{X}) of coil. Owing to the suggested technique, the receiver directly charges a low-voltage battery while maintaining a small rms current without using a complex voltage regulator. The receiver achieves an efficiency as high as 84.7% with a 1.1 V battery while operating at the resonant frequency (f_{{\text{reso}}}) of 6.78 MHz. The power delivered to the output (P_{O}) is in the range from 1.5 to 50 mW. The VBCM receiver was fabricated by 180 nm CMOS technology with a total active area of 0.22 mm 2 .
doi_str_mv 10.1109/TIE.2018.2873525
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8485667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8485667</ieee_id><sourcerecordid>2253457026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-94247db439d4034b63b27aab8765d09a330681867f33c56069c2282c81cc9f53</originalsourceid><addsrcrecordid>eNo9kElLK0EUhQtRMA57wU2B6441D0vNcwhEFA26bKqrb8eWTldeVUXJyr9uS4Kre-CeAT6EzigZU0rs5Xx6M2aEmjEzmksm99CISqkLa4XZRyPCtCkIEeoQHaX0QQgVksoR-n4NXXYLKK5DSBlqPFnHCH0uHkIN-K2N0EFK-Cl8QcTP4KH9HEQTIv43_HzuNnjy7uKi7RfY4Vn4KnaF-NrlDHGD2x5Pl6vO9dlVHeAHqFvvOvyyGeaW6QQdNK5LcLq7x2h-ezOf3Bezx7vp5GpWeGZpLqxgQteV4LYWhItK8Ypp5yqjlayJdZwTZahRuuHcS0WU9YwZ5g313jaSH6OLbe0qhv9rSLn8COvYD4slY5ILqQlTg4tsXT6GlCI05Sq2Sxc3JSXlL-VyoFz-Ui53lIfI-TbSAsCf3QgjldL8BzNfeG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253457026</pqid></control><display><type>article</type><title>Voltage-Boosted Current-Mode Wireless Power Receiver for Directly Charging a Low-Voltage Battery in Implantable Medical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Sang-Han ; Bang, Jun-Suk ; Yoon, Kye-Seok ; Gwon, Hui-Dong ; Kim, Sang-Won ; Cho, In-Kui ; Hong, Sung-Wan ; Cho, Gyu-Hyeong</creator><creatorcontrib>Lee, Sang-Han ; Bang, Jun-Suk ; Yoon, Kye-Seok ; Gwon, Hui-Dong ; Kim, Sang-Won ; Cho, In-Kui ; Hong, Sung-Wan ; Cho, Gyu-Hyeong</creatorcontrib><description><![CDATA[In this paper, a resonant current-mode receiver is studied to charge low-voltage batteries wirelessly for supplying medical implantable systems. To increase efficiency, the root-mean-square (rms) current in the LC tank of the receiver (RX) is reduced by using a voltage-boosted current-mode (VBCM) receiver. This receiver combines the conventional current-mode receiver with a switched-capacitor converter to boost the voltage instantaneously at the switching node (<inline-formula><tex-math notation="LaTeX">V_{X}</tex-math></inline-formula>) of coil. Owing to the suggested technique, the receiver directly charges a low-voltage battery while maintaining a small rms current without using a complex voltage regulator. The receiver achieves an efficiency as high as 84.7% with a 1.1 V battery while operating at the resonant frequency (<inline-formula><tex-math notation="LaTeX">f_{{\text{reso}}}</tex-math></inline-formula>) of 6.78 MHz. The power delivered to the output (<inline-formula><tex-math notation="LaTeX">P_{O}</tex-math></inline-formula>) is in the range from 1.5 to 50 mW. The VBCM receiver was fabricated by 180 nm CMOS technology with a total active area of 0.22 mm 2 .]]></description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2873525</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Capacitors ; CMOS ; Coils ; Converters ; Current-mode receiver ; implantable medical system (IMS) ; low-voltage battery ; Receivers ; Resonant frequencies ; Switches ; Switching frequency ; Switching loss ; voltage boosting ; Voltage control ; Voltage regulators ; wireless power transfer</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-11, Vol.66 (11), p.8860-8865</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-94247db439d4034b63b27aab8765d09a330681867f33c56069c2282c81cc9f53</citedby><cites>FETCH-LOGICAL-c291t-94247db439d4034b63b27aab8765d09a330681867f33c56069c2282c81cc9f53</cites><orcidid>0000-0002-9684-7040 ; 0000-0003-1597-5727 ; 0000-0001-7541-787X ; 0000-0003-4809-9719 ; 0000-0002-4270-6824 ; 0000-0003-3875-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8485667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8485667$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Sang-Han</creatorcontrib><creatorcontrib>Bang, Jun-Suk</creatorcontrib><creatorcontrib>Yoon, Kye-Seok</creatorcontrib><creatorcontrib>Gwon, Hui-Dong</creatorcontrib><creatorcontrib>Kim, Sang-Won</creatorcontrib><creatorcontrib>Cho, In-Kui</creatorcontrib><creatorcontrib>Hong, Sung-Wan</creatorcontrib><creatorcontrib>Cho, Gyu-Hyeong</creatorcontrib><title>Voltage-Boosted Current-Mode Wireless Power Receiver for Directly Charging a Low-Voltage Battery in Implantable Medical Systems</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description><![CDATA[In this paper, a resonant current-mode receiver is studied to charge low-voltage batteries wirelessly for supplying medical implantable systems. To increase efficiency, the root-mean-square (rms) current in the LC tank of the receiver (RX) is reduced by using a voltage-boosted current-mode (VBCM) receiver. This receiver combines the conventional current-mode receiver with a switched-capacitor converter to boost the voltage instantaneously at the switching node (<inline-formula><tex-math notation="LaTeX">V_{X}</tex-math></inline-formula>) of coil. Owing to the suggested technique, the receiver directly charges a low-voltage battery while maintaining a small rms current without using a complex voltage regulator. The receiver achieves an efficiency as high as 84.7% with a 1.1 V battery while operating at the resonant frequency (<inline-formula><tex-math notation="LaTeX">f_{{\text{reso}}}</tex-math></inline-formula>) of 6.78 MHz. The power delivered to the output (<inline-formula><tex-math notation="LaTeX">P_{O}</tex-math></inline-formula>) is in the range from 1.5 to 50 mW. The VBCM receiver was fabricated by 180 nm CMOS technology with a total active area of 0.22 mm 2 .]]></description><subject>Batteries</subject><subject>Capacitors</subject><subject>CMOS</subject><subject>Coils</subject><subject>Converters</subject><subject>Current-mode receiver</subject><subject>implantable medical system (IMS)</subject><subject>low-voltage battery</subject><subject>Receivers</subject><subject>Resonant frequencies</subject><subject>Switches</subject><subject>Switching frequency</subject><subject>Switching loss</subject><subject>voltage boosting</subject><subject>Voltage control</subject><subject>Voltage regulators</subject><subject>wireless power transfer</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElLK0EUhQtRMA57wU2B6441D0vNcwhEFA26bKqrb8eWTldeVUXJyr9uS4Kre-CeAT6EzigZU0rs5Xx6M2aEmjEzmksm99CISqkLa4XZRyPCtCkIEeoQHaX0QQgVksoR-n4NXXYLKK5DSBlqPFnHCH0uHkIN-K2N0EFK-Cl8QcTP4KH9HEQTIv43_HzuNnjy7uKi7RfY4Vn4KnaF-NrlDHGD2x5Pl6vO9dlVHeAHqFvvOvyyGeaW6QQdNK5LcLq7x2h-ezOf3Bezx7vp5GpWeGZpLqxgQteV4LYWhItK8Ypp5yqjlayJdZwTZahRuuHcS0WU9YwZ5g313jaSH6OLbe0qhv9rSLn8COvYD4slY5ILqQlTg4tsXT6GlCI05Sq2Sxc3JSXlL-VyoFz-Ui53lIfI-TbSAsCf3QgjldL8BzNfeG0</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lee, Sang-Han</creator><creator>Bang, Jun-Suk</creator><creator>Yoon, Kye-Seok</creator><creator>Gwon, Hui-Dong</creator><creator>Kim, Sang-Won</creator><creator>Cho, In-Kui</creator><creator>Hong, Sung-Wan</creator><creator>Cho, Gyu-Hyeong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9684-7040</orcidid><orcidid>https://orcid.org/0000-0003-1597-5727</orcidid><orcidid>https://orcid.org/0000-0001-7541-787X</orcidid><orcidid>https://orcid.org/0000-0003-4809-9719</orcidid><orcidid>https://orcid.org/0000-0002-4270-6824</orcidid><orcidid>https://orcid.org/0000-0003-3875-7538</orcidid></search><sort><creationdate>20191101</creationdate><title>Voltage-Boosted Current-Mode Wireless Power Receiver for Directly Charging a Low-Voltage Battery in Implantable Medical Systems</title><author>Lee, Sang-Han ; Bang, Jun-Suk ; Yoon, Kye-Seok ; Gwon, Hui-Dong ; Kim, Sang-Won ; Cho, In-Kui ; Hong, Sung-Wan ; Cho, Gyu-Hyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-94247db439d4034b63b27aab8765d09a330681867f33c56069c2282c81cc9f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Capacitors</topic><topic>CMOS</topic><topic>Coils</topic><topic>Converters</topic><topic>Current-mode receiver</topic><topic>implantable medical system (IMS)</topic><topic>low-voltage battery</topic><topic>Receivers</topic><topic>Resonant frequencies</topic><topic>Switches</topic><topic>Switching frequency</topic><topic>Switching loss</topic><topic>voltage boosting</topic><topic>Voltage control</topic><topic>Voltage regulators</topic><topic>wireless power transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang-Han</creatorcontrib><creatorcontrib>Bang, Jun-Suk</creatorcontrib><creatorcontrib>Yoon, Kye-Seok</creatorcontrib><creatorcontrib>Gwon, Hui-Dong</creatorcontrib><creatorcontrib>Kim, Sang-Won</creatorcontrib><creatorcontrib>Cho, In-Kui</creatorcontrib><creatorcontrib>Hong, Sung-Wan</creatorcontrib><creatorcontrib>Cho, Gyu-Hyeong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Sang-Han</au><au>Bang, Jun-Suk</au><au>Yoon, Kye-Seok</au><au>Gwon, Hui-Dong</au><au>Kim, Sang-Won</au><au>Cho, In-Kui</au><au>Hong, Sung-Wan</au><au>Cho, Gyu-Hyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-Boosted Current-Mode Wireless Power Receiver for Directly Charging a Low-Voltage Battery in Implantable Medical Systems</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>66</volume><issue>11</issue><spage>8860</spage><epage>8865</epage><pages>8860-8865</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract><![CDATA[In this paper, a resonant current-mode receiver is studied to charge low-voltage batteries wirelessly for supplying medical implantable systems. To increase efficiency, the root-mean-square (rms) current in the LC tank of the receiver (RX) is reduced by using a voltage-boosted current-mode (VBCM) receiver. This receiver combines the conventional current-mode receiver with a switched-capacitor converter to boost the voltage instantaneously at the switching node (<inline-formula><tex-math notation="LaTeX">V_{X}</tex-math></inline-formula>) of coil. Owing to the suggested technique, the receiver directly charges a low-voltage battery while maintaining a small rms current without using a complex voltage regulator. The receiver achieves an efficiency as high as 84.7% with a 1.1 V battery while operating at the resonant frequency (<inline-formula><tex-math notation="LaTeX">f_{{\text{reso}}}</tex-math></inline-formula>) of 6.78 MHz. The power delivered to the output (<inline-formula><tex-math notation="LaTeX">P_{O}</tex-math></inline-formula>) is in the range from 1.5 to 50 mW. The VBCM receiver was fabricated by 180 nm CMOS technology with a total active area of 0.22 mm 2 .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2873525</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9684-7040</orcidid><orcidid>https://orcid.org/0000-0003-1597-5727</orcidid><orcidid>https://orcid.org/0000-0001-7541-787X</orcidid><orcidid>https://orcid.org/0000-0003-4809-9719</orcidid><orcidid>https://orcid.org/0000-0002-4270-6824</orcidid><orcidid>https://orcid.org/0000-0003-3875-7538</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-11, Vol.66 (11), p.8860-8865
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_8485667
source IEEE Electronic Library (IEL)
subjects Batteries
Capacitors
CMOS
Coils
Converters
Current-mode receiver
implantable medical system (IMS)
low-voltage battery
Receivers
Resonant frequencies
Switches
Switching frequency
Switching loss
voltage boosting
Voltage control
Voltage regulators
wireless power transfer
title Voltage-Boosted Current-Mode Wireless Power Receiver for Directly Charging a Low-Voltage Battery in Implantable Medical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-Boosted%20Current-Mode%20Wireless%20Power%20Receiver%20for%20Directly%20Charging%20a%20Low-Voltage%20Battery%20in%20Implantable%20Medical%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Lee,%20Sang-Han&rft.date=2019-11-01&rft.volume=66&rft.issue=11&rft.spage=8860&rft.epage=8865&rft.pages=8860-8865&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2873525&rft_dat=%3Cproquest_RIE%3E2253457026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253457026&rft_id=info:pmid/&rft_ieee_id=8485667&rfr_iscdi=true