The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies
The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (>4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2019-01, Vol.9 (1), p.174-182 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 1 |
container_start_page | 174 |
container_title | IEEE journal of photovoltaics |
container_volume | 9 |
creator | Eisler, Carissa N. Zhou, Weijun Atwater, Harry A. Flowers, Cristofer A. Warmann, Emily C. Lloyd, John V. Espinet-Gonzalez, Pilar Darbe, Sunita Dee, Michelle S. Escarra, Matthew D. Kosten, Emily D. |
description | The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (>4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (>98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (>40%). |
doi_str_mv | 10.1109/JPHOTOV.2018.2872109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8485376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8485376</ieee_id><sourcerecordid>2159992352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</originalsourceid><addsrcrecordid>eNo9UU1rGzEQXUoLDUl-QXsQLYXmYFffu-ohYJK0SUhwqJ1ehayd9cooK1fSBnLuH69cux0YZhjee8zMq6r3BE8JwerL7cP1fDn_OaWYNFPa1LQMX1VHlAg5YRyz1_961pC31WlKG1xCYiElP6p-L3tAD8G_9NBG49FiC3b0JqIf0HmwOcSvaPZ3muP4NFlsvcvZDWt0P_rsNuNgswsDuoTk1gPKAc1s7-AZ0KPP0fRu3aPP6FzgT2doEXa696EdPaCrrnPWwVAynVRvOuMTnB7qcfX47Wp5cT25m3-_uZjdTSyraS7HsE41xCgl-YoSzkUrV1ZQoVojG2C8NaQ2Elai4dZQzBVXIMB00gjDOsKOqw973ZCy08m6DLa3YRjKcbq8SNZYFtDHPWgbw68RUtabMMah7KXLG5VSlAlaUHyPsjGkFKHT2-ieTHzRBOudLfpgi97Zog-2FNq7Pc0BwH9KwxvBasn-AJdRiOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159992352</pqid></control><display><type>article</type><title>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies</title><source>IEEE Electronic Library (IEL)</source><creator>Eisler, Carissa N. ; Zhou, Weijun ; Atwater, Harry A. ; Flowers, Cristofer A. ; Warmann, Emily C. ; Lloyd, John V. ; Espinet-Gonzalez, Pilar ; Darbe, Sunita ; Dee, Michelle S. ; Escarra, Matthew D. ; Kosten, Emily D.</creator><creatorcontrib>Eisler, Carissa N. ; Zhou, Weijun ; Atwater, Harry A. ; Flowers, Cristofer A. ; Warmann, Emily C. ; Lloyd, John V. ; Espinet-Gonzalez, Pilar ; Darbe, Sunita ; Dee, Michelle S. ; Escarra, Matthew D. ; Kosten, Emily D. ; California Inst. of Technology (CalTech), Pasadena, CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (>4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (>98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (>40%).</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2872109</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Architecture ; Concentrating ; Concentrators ; dichroic filter ; Efficiency ; Electric contacts ; Electrical junctions ; Glass ; high efficiency ; Optics ; Photonic band gap ; Photonics ; Photovoltaic cells ; Photovoltaic systems ; photovoltaics ; Physics ; Power conditioning ; Power efficiency ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; Solar cells ; spectrum splitting ; Splitting ; State of the art ; Thermalization (energy absorption)</subject><ispartof>IEEE journal of photovoltaics, 2019-01, Vol.9 (1), p.174-182</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</citedby><cites>FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</cites><orcidid>0000-0002-5755-5280 ; 0000-0002-8099-1814 ; 0000-0001-9435-0201 ; 0000-0002-7656-0077 ; 0000-0002-0232-942X ; 0000000276560077 ; 0000000280991814 ; 000000020232942X ; 0000000257555280 ; 0000000194350201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8485376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8485376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1566706$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisler, Carissa N.</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Flowers, Cristofer A.</creatorcontrib><creatorcontrib>Warmann, Emily C.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Espinet-Gonzalez, Pilar</creatorcontrib><creatorcontrib>Darbe, Sunita</creatorcontrib><creatorcontrib>Dee, Michelle S.</creatorcontrib><creatorcontrib>Escarra, Matthew D.</creatorcontrib><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (>4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (>98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (>40%).</description><subject>Architecture</subject><subject>Concentrating</subject><subject>Concentrators</subject><subject>dichroic filter</subject><subject>Efficiency</subject><subject>Electric contacts</subject><subject>Electrical junctions</subject><subject>Glass</subject><subject>high efficiency</subject><subject>Optics</subject><subject>Photonic band gap</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>photovoltaics</subject><subject>Physics</subject><subject>Power conditioning</subject><subject>Power efficiency</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Solar cells</subject><subject>spectrum splitting</subject><subject>Splitting</subject><subject>State of the art</subject><subject>Thermalization (energy absorption)</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1rGzEQXUoLDUl-QXsQLYXmYFffu-ohYJK0SUhwqJ1ehayd9cooK1fSBnLuH69cux0YZhjee8zMq6r3BE8JwerL7cP1fDn_OaWYNFPa1LQMX1VHlAg5YRyz1_961pC31WlKG1xCYiElP6p-L3tAD8G_9NBG49FiC3b0JqIf0HmwOcSvaPZ3muP4NFlsvcvZDWt0P_rsNuNgswsDuoTk1gPKAc1s7-AZ0KPP0fRu3aPP6FzgT2doEXa696EdPaCrrnPWwVAynVRvOuMTnB7qcfX47Wp5cT25m3-_uZjdTSyraS7HsE41xCgl-YoSzkUrV1ZQoVojG2C8NaQ2Elai4dZQzBVXIMB00gjDOsKOqw973ZCy08m6DLa3YRjKcbq8SNZYFtDHPWgbw68RUtabMMah7KXLG5VSlAlaUHyPsjGkFKHT2-ieTHzRBOudLfpgi97Zog-2FNq7Pc0BwH9KwxvBasn-AJdRiOM</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Eisler, Carissa N.</creator><creator>Zhou, Weijun</creator><creator>Atwater, Harry A.</creator><creator>Flowers, Cristofer A.</creator><creator>Warmann, Emily C.</creator><creator>Lloyd, John V.</creator><creator>Espinet-Gonzalez, Pilar</creator><creator>Darbe, Sunita</creator><creator>Dee, Michelle S.</creator><creator>Escarra, Matthew D.</creator><creator>Kosten, Emily D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5755-5280</orcidid><orcidid>https://orcid.org/0000-0002-8099-1814</orcidid><orcidid>https://orcid.org/0000-0001-9435-0201</orcidid><orcidid>https://orcid.org/0000-0002-7656-0077</orcidid><orcidid>https://orcid.org/0000-0002-0232-942X</orcidid><orcidid>https://orcid.org/0000000276560077</orcidid><orcidid>https://orcid.org/0000000280991814</orcidid><orcidid>https://orcid.org/000000020232942X</orcidid><orcidid>https://orcid.org/0000000257555280</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid></search><sort><creationdate>201901</creationdate><title>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies</title><author>Eisler, Carissa N. ; Zhou, Weijun ; Atwater, Harry A. ; Flowers, Cristofer A. ; Warmann, Emily C. ; Lloyd, John V. ; Espinet-Gonzalez, Pilar ; Darbe, Sunita ; Dee, Michelle S. ; Escarra, Matthew D. ; Kosten, Emily D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Concentrating</topic><topic>Concentrators</topic><topic>dichroic filter</topic><topic>Efficiency</topic><topic>Electric contacts</topic><topic>Electrical junctions</topic><topic>Glass</topic><topic>high efficiency</topic><topic>Optics</topic><topic>Photonic band gap</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>photovoltaics</topic><topic>Physics</topic><topic>Power conditioning</topic><topic>Power efficiency</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Solar cells</topic><topic>spectrum splitting</topic><topic>Splitting</topic><topic>State of the art</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisler, Carissa N.</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Flowers, Cristofer A.</creatorcontrib><creatorcontrib>Warmann, Emily C.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Espinet-Gonzalez, Pilar</creatorcontrib><creatorcontrib>Darbe, Sunita</creatorcontrib><creatorcontrib>Dee, Michelle S.</creatorcontrib><creatorcontrib>Escarra, Matthew D.</creatorcontrib><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eisler, Carissa N.</au><au>Zhou, Weijun</au><au>Atwater, Harry A.</au><au>Flowers, Cristofer A.</au><au>Warmann, Emily C.</au><au>Lloyd, John V.</au><au>Espinet-Gonzalez, Pilar</au><au>Darbe, Sunita</au><au>Dee, Michelle S.</au><au>Escarra, Matthew D.</au><au>Kosten, Emily D.</au><aucorp>California Inst. of Technology (CalTech), Pasadena, CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2019-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>174</spage><epage>182</epage><pages>174-182</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (>4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (>98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (>40%).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2872109</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5755-5280</orcidid><orcidid>https://orcid.org/0000-0002-8099-1814</orcidid><orcidid>https://orcid.org/0000-0001-9435-0201</orcidid><orcidid>https://orcid.org/0000-0002-7656-0077</orcidid><orcidid>https://orcid.org/0000-0002-0232-942X</orcidid><orcidid>https://orcid.org/0000000276560077</orcidid><orcidid>https://orcid.org/0000000280991814</orcidid><orcidid>https://orcid.org/000000020232942X</orcidid><orcidid>https://orcid.org/0000000257555280</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2019-01, Vol.9 (1), p.174-182 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_8485376 |
source | IEEE Electronic Library (IEL) |
subjects | Architecture Concentrating Concentrators dichroic filter Efficiency Electric contacts Electrical junctions Glass high efficiency Optics Photonic band gap Photonics Photovoltaic cells Photovoltaic systems photovoltaics Physics Power conditioning Power efficiency solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) Solar cells spectrum splitting Splitting State of the art Thermalization (energy absorption) |
title | The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Polyhedral%20Specular%20Reflector:%20A%20Spectrum-Splitting%20Multijunction%20Design%20to%20Achieve%20Ultrahigh%20(%20%3E50%25)%20Solar%20Module%20Efficiencies&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Eisler,%20Carissa%20N.&rft.aucorp=California%20Inst.%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2019-01&rft.volume=9&rft.issue=1&rft.spage=174&rft.epage=182&rft.pages=174-182&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2872109&rft_dat=%3Cproquest_RIE%3E2159992352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159992352&rft_id=info:pmid/&rft_ieee_id=8485376&rfr_iscdi=true |