The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies

The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (>4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2019-01, Vol.9 (1), p.174-182
Hauptverfasser: Eisler, Carissa N., Zhou, Weijun, Atwater, Harry A., Flowers, Cristofer A., Warmann, Emily C., Lloyd, John V., Espinet-Gonzalez, Pilar, Darbe, Sunita, Dee, Michelle S., Escarra, Matthew D., Kosten, Emily D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 174
container_title IEEE journal of photovoltaics
container_volume 9
creator Eisler, Carissa N.
Zhou, Weijun
Atwater, Harry A.
Flowers, Cristofer A.
Warmann, Emily C.
Lloyd, John V.
Espinet-Gonzalez, Pilar
Darbe, Sunita
Dee, Michelle S.
Escarra, Matthew D.
Kosten, Emily D.
description The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (>4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (>98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (>40%).
doi_str_mv 10.1109/JPHOTOV.2018.2872109
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8485376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8485376</ieee_id><sourcerecordid>2159992352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</originalsourceid><addsrcrecordid>eNo9UU1rGzEQXUoLDUl-QXsQLYXmYFffu-ohYJK0SUhwqJ1ehayd9cooK1fSBnLuH69cux0YZhjee8zMq6r3BE8JwerL7cP1fDn_OaWYNFPa1LQMX1VHlAg5YRyz1_961pC31WlKG1xCYiElP6p-L3tAD8G_9NBG49FiC3b0JqIf0HmwOcSvaPZ3muP4NFlsvcvZDWt0P_rsNuNgswsDuoTk1gPKAc1s7-AZ0KPP0fRu3aPP6FzgT2doEXa696EdPaCrrnPWwVAynVRvOuMTnB7qcfX47Wp5cT25m3-_uZjdTSyraS7HsE41xCgl-YoSzkUrV1ZQoVojG2C8NaQ2Elai4dZQzBVXIMB00gjDOsKOqw973ZCy08m6DLa3YRjKcbq8SNZYFtDHPWgbw68RUtabMMah7KXLG5VSlAlaUHyPsjGkFKHT2-ieTHzRBOudLfpgi97Zog-2FNq7Pc0BwH9KwxvBasn-AJdRiOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159992352</pqid></control><display><type>article</type><title>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( &gt;50%) Solar Module Efficiencies</title><source>IEEE Electronic Library (IEL)</source><creator>Eisler, Carissa N. ; Zhou, Weijun ; Atwater, Harry A. ; Flowers, Cristofer A. ; Warmann, Emily C. ; Lloyd, John V. ; Espinet-Gonzalez, Pilar ; Darbe, Sunita ; Dee, Michelle S. ; Escarra, Matthew D. ; Kosten, Emily D.</creator><creatorcontrib>Eisler, Carissa N. ; Zhou, Weijun ; Atwater, Harry A. ; Flowers, Cristofer A. ; Warmann, Emily C. ; Lloyd, John V. ; Espinet-Gonzalez, Pilar ; Darbe, Sunita ; Dee, Michelle S. ; Escarra, Matthew D. ; Kosten, Emily D. ; California Inst. of Technology (CalTech), Pasadena, CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (&gt;4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (&gt;98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (&gt;40%).</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2872109</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Architecture ; Concentrating ; Concentrators ; dichroic filter ; Efficiency ; Electric contacts ; Electrical junctions ; Glass ; high efficiency ; Optics ; Photonic band gap ; Photonics ; Photovoltaic cells ; Photovoltaic systems ; photovoltaics ; Physics ; Power conditioning ; Power efficiency ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; Solar cells ; spectrum splitting ; Splitting ; State of the art ; Thermalization (energy absorption)</subject><ispartof>IEEE journal of photovoltaics, 2019-01, Vol.9 (1), p.174-182</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</citedby><cites>FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</cites><orcidid>0000-0002-5755-5280 ; 0000-0002-8099-1814 ; 0000-0001-9435-0201 ; 0000-0002-7656-0077 ; 0000-0002-0232-942X ; 0000000276560077 ; 0000000280991814 ; 000000020232942X ; 0000000257555280 ; 0000000194350201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8485376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8485376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1566706$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisler, Carissa N.</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Flowers, Cristofer A.</creatorcontrib><creatorcontrib>Warmann, Emily C.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Espinet-Gonzalez, Pilar</creatorcontrib><creatorcontrib>Darbe, Sunita</creatorcontrib><creatorcontrib>Dee, Michelle S.</creatorcontrib><creatorcontrib>Escarra, Matthew D.</creatorcontrib><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( &gt;50%) Solar Module Efficiencies</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (&gt;4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (&gt;98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (&gt;40%).</description><subject>Architecture</subject><subject>Concentrating</subject><subject>Concentrators</subject><subject>dichroic filter</subject><subject>Efficiency</subject><subject>Electric contacts</subject><subject>Electrical junctions</subject><subject>Glass</subject><subject>high efficiency</subject><subject>Optics</subject><subject>Photonic band gap</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>photovoltaics</subject><subject>Physics</subject><subject>Power conditioning</subject><subject>Power efficiency</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Solar cells</subject><subject>spectrum splitting</subject><subject>Splitting</subject><subject>State of the art</subject><subject>Thermalization (energy absorption)</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1rGzEQXUoLDUl-QXsQLYXmYFffu-ohYJK0SUhwqJ1ehayd9cooK1fSBnLuH69cux0YZhjee8zMq6r3BE8JwerL7cP1fDn_OaWYNFPa1LQMX1VHlAg5YRyz1_961pC31WlKG1xCYiElP6p-L3tAD8G_9NBG49FiC3b0JqIf0HmwOcSvaPZ3muP4NFlsvcvZDWt0P_rsNuNgswsDuoTk1gPKAc1s7-AZ0KPP0fRu3aPP6FzgT2doEXa696EdPaCrrnPWwVAynVRvOuMTnB7qcfX47Wp5cT25m3-_uZjdTSyraS7HsE41xCgl-YoSzkUrV1ZQoVojG2C8NaQ2Elai4dZQzBVXIMB00gjDOsKOqw973ZCy08m6DLa3YRjKcbq8SNZYFtDHPWgbw68RUtabMMah7KXLG5VSlAlaUHyPsjGkFKHT2-ieTHzRBOudLfpgi97Zog-2FNq7Pc0BwH9KwxvBasn-AJdRiOM</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Eisler, Carissa N.</creator><creator>Zhou, Weijun</creator><creator>Atwater, Harry A.</creator><creator>Flowers, Cristofer A.</creator><creator>Warmann, Emily C.</creator><creator>Lloyd, John V.</creator><creator>Espinet-Gonzalez, Pilar</creator><creator>Darbe, Sunita</creator><creator>Dee, Michelle S.</creator><creator>Escarra, Matthew D.</creator><creator>Kosten, Emily D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5755-5280</orcidid><orcidid>https://orcid.org/0000-0002-8099-1814</orcidid><orcidid>https://orcid.org/0000-0001-9435-0201</orcidid><orcidid>https://orcid.org/0000-0002-7656-0077</orcidid><orcidid>https://orcid.org/0000-0002-0232-942X</orcidid><orcidid>https://orcid.org/0000000276560077</orcidid><orcidid>https://orcid.org/0000000280991814</orcidid><orcidid>https://orcid.org/000000020232942X</orcidid><orcidid>https://orcid.org/0000000257555280</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid></search><sort><creationdate>201901</creationdate><title>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( &gt;50%) Solar Module Efficiencies</title><author>Eisler, Carissa N. ; Zhou, Weijun ; Atwater, Harry A. ; Flowers, Cristofer A. ; Warmann, Emily C. ; Lloyd, John V. ; Espinet-Gonzalez, Pilar ; Darbe, Sunita ; Dee, Michelle S. ; Escarra, Matthew D. ; Kosten, Emily D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-343f981a9964b21445d6bc5259da68e34da17a6eb584ca204949e5eaf6a5a3f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Concentrating</topic><topic>Concentrators</topic><topic>dichroic filter</topic><topic>Efficiency</topic><topic>Electric contacts</topic><topic>Electrical junctions</topic><topic>Glass</topic><topic>high efficiency</topic><topic>Optics</topic><topic>Photonic band gap</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>photovoltaics</topic><topic>Physics</topic><topic>Power conditioning</topic><topic>Power efficiency</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Solar cells</topic><topic>spectrum splitting</topic><topic>Splitting</topic><topic>State of the art</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisler, Carissa N.</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Flowers, Cristofer A.</creatorcontrib><creatorcontrib>Warmann, Emily C.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Espinet-Gonzalez, Pilar</creatorcontrib><creatorcontrib>Darbe, Sunita</creatorcontrib><creatorcontrib>Dee, Michelle S.</creatorcontrib><creatorcontrib>Escarra, Matthew D.</creatorcontrib><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eisler, Carissa N.</au><au>Zhou, Weijun</au><au>Atwater, Harry A.</au><au>Flowers, Cristofer A.</au><au>Warmann, Emily C.</au><au>Lloyd, John V.</au><au>Espinet-Gonzalez, Pilar</au><au>Darbe, Sunita</au><au>Dee, Michelle S.</au><au>Escarra, Matthew D.</au><au>Kosten, Emily D.</au><aucorp>California Inst. of Technology (CalTech), Pasadena, CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( &gt;50%) Solar Module Efficiencies</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2019-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>174</spage><epage>182</epage><pages>174-182</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The most feasible pathway to record 50% efficiency photovoltaic devices is by utilizing many (&gt;4) junctions to minimize thermalization and nonabsorption losses. Here we propose a spectrum-splitting design, the polyhedral specular reflector (PSR), that employs an optical architecture to divide and concentrate incident sunlight, allowing the incorporation of more junctions compared with traditional monolithic architectures. This paper describes the PSR design and indicates the requirements to achieve a 50% efficiency module by coupling robust cell, optical, and electrical simulations. We predict that a module comprised of the seven subcells with an average external radiative efficiency of at least 3%, an optical architecture capable of a splitting efficiency of at least 88% and 300× concentration, small (≤1 μm) metallic fingers for subcell contact, and a state-of-the-art power conditioning system (&gt;98% efficiency) can achieve a module efficiency of 50%, a record for both multijunction cells and modules. We also discuss the flexibility of the design and explore how adjusting the size and type of concentrators can still yield record module efficiencies (&gt;40%).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2872109</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5755-5280</orcidid><orcidid>https://orcid.org/0000-0002-8099-1814</orcidid><orcidid>https://orcid.org/0000-0001-9435-0201</orcidid><orcidid>https://orcid.org/0000-0002-7656-0077</orcidid><orcidid>https://orcid.org/0000-0002-0232-942X</orcidid><orcidid>https://orcid.org/0000000276560077</orcidid><orcidid>https://orcid.org/0000000280991814</orcidid><orcidid>https://orcid.org/000000020232942X</orcidid><orcidid>https://orcid.org/0000000257555280</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2019-01, Vol.9 (1), p.174-182
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_8485376
source IEEE Electronic Library (IEL)
subjects Architecture
Concentrating
Concentrators
dichroic filter
Efficiency
Electric contacts
Electrical junctions
Glass
high efficiency
Optics
Photonic band gap
Photonics
Photovoltaic cells
Photovoltaic systems
photovoltaics
Physics
Power conditioning
Power efficiency
solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)
Solar cells
spectrum splitting
Splitting
State of the art
Thermalization (energy absorption)
title The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Polyhedral%20Specular%20Reflector:%20A%20Spectrum-Splitting%20Multijunction%20Design%20to%20Achieve%20Ultrahigh%20(%20%3E50%25)%20Solar%20Module%20Efficiencies&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Eisler,%20Carissa%20N.&rft.aucorp=California%20Inst.%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2019-01&rft.volume=9&rft.issue=1&rft.spage=174&rft.epage=182&rft.pages=174-182&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2872109&rft_dat=%3Cproquest_RIE%3E2159992352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159992352&rft_id=info:pmid/&rft_ieee_id=8485376&rfr_iscdi=true