Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics

We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2018-12, Vol.66 (12), p.6596-6605
1. Verfasser: Bernard, J. M. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6605
container_issue 12
container_start_page 6596
container_title IEEE transactions on antennas and propagation
container_volume 66
creator Bernard, J. M. L.
description We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions.
doi_str_mv 10.1109/TAP.2018.2874492
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8485327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8485327</ieee_id><sourcerecordid>2148303331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</originalsourceid><addsrcrecordid>eNpFUU1rGzEUFKWBumnugV4EvWZdfa6l3pYlbQKGGOJAbotW-1Rk7NVWkkP8X_pjI9emOQ2PmXkwMwhdUzKnlOjv62Y1Z4SqOVMLITT7gGZUSlUxxuhHNCOFqjSrnz-hzyltyimUEDP0dxXDZH6b7MOIH14gYoPbMKZsxozvdxMMZrSAV1szwg_cxN7naOIBr6LfHfEx7KOFhM04vMtvcDOa7SH5hIPD7T5jP-LGZv8CuDWp8Levxmb8CNFDuvlnbsNu2kIG3KTDbsohe5u-oAtntgmuzniJnn7ertu7avnw675tlpVlmuZKESlcLYQgqidW9npB6ULVRgPnTg6qBzuYoXZMcumorZ3rRa0VWK0l4VLwS_Tt9HeK4c8eUu42JVaJkDpWeuKEc06LipxUNoaUIrhuOpXQUdIdN-jKBt1xg-68QbF8PVk8APyXK6EkZwv-Bs7Mg1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148303331</pqid></control><display><type>article</type><title>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</title><source>IEEE Electronic Library (IEL)</source><creator>Bernard, J. M. L.</creator><creatorcontrib>Bernard, J. M. L.</creatorcontrib><description>We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2018.2874492</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical expression ; Antennas ; arbitrary source ; Asymptotic properties ; Boundary conditions ; Current sources ; Electric potential ; Electromagnetic fields ; Electromagnetic scattering ; electromagnetism ; Error functions ; Impedance ; impedance plane ; passive or active material ; scattering ; Surface impedance ; Surface waves</subject><ispartof>IEEE transactions on antennas and propagation, 2018-12, Vol.66 (12), p.6596-6605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</citedby><cites>FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</cites><orcidid>0000-0001-6981-6591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8485327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8485327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bernard, J. M. L.</creatorcontrib><title>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions.</description><subject>Analytical expression</subject><subject>Antennas</subject><subject>arbitrary source</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Current sources</subject><subject>Electric potential</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic scattering</subject><subject>electromagnetism</subject><subject>Error functions</subject><subject>Impedance</subject><subject>impedance plane</subject><subject>passive or active material</subject><subject>scattering</subject><subject>Surface impedance</subject><subject>Surface waves</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFUU1rGzEUFKWBumnugV4EvWZdfa6l3pYlbQKGGOJAbotW-1Rk7NVWkkP8X_pjI9emOQ2PmXkwMwhdUzKnlOjv62Y1Z4SqOVMLITT7gGZUSlUxxuhHNCOFqjSrnz-hzyltyimUEDP0dxXDZH6b7MOIH14gYoPbMKZsxozvdxMMZrSAV1szwg_cxN7naOIBr6LfHfEx7KOFhM04vMtvcDOa7SH5hIPD7T5jP-LGZv8CuDWp8Levxmb8CNFDuvlnbsNu2kIG3KTDbsohe5u-oAtntgmuzniJnn7ertu7avnw675tlpVlmuZKESlcLYQgqidW9npB6ULVRgPnTg6qBzuYoXZMcumorZ3rRa0VWK0l4VLwS_Tt9HeK4c8eUu42JVaJkDpWeuKEc06LipxUNoaUIrhuOpXQUdIdN-jKBt1xg-68QbF8PVk8APyXK6EkZwv-Bs7Mg1U</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Bernard, J. M. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6981-6591</orcidid></search><sort><creationdate>20181201</creationdate><title>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</title><author>Bernard, J. M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical expression</topic><topic>Antennas</topic><topic>arbitrary source</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Current sources</topic><topic>Electric potential</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic scattering</topic><topic>electromagnetism</topic><topic>Error functions</topic><topic>Impedance</topic><topic>impedance plane</topic><topic>passive or active material</topic><topic>scattering</topic><topic>Surface impedance</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernard, J. M. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernard, J. M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>66</volume><issue>12</issue><spage>6596</spage><epage>6605</epage><pages>6596-6605</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2018.2874492</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6981-6591</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2018-12, Vol.66 (12), p.6596-6605
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_8485327
source IEEE Electronic Library (IEL)
subjects Analytical expression
Antennas
arbitrary source
Asymptotic properties
Boundary conditions
Current sources
Electric potential
Electromagnetic fields
Electromagnetic scattering
electromagnetism
Error functions
Impedance
impedance plane
passive or active material
scattering
Surface impedance
Surface waves
title Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20Over%20a%20Constant%20Impedance%20Plane:%20Arbitrary%20Primary%20Sources%20and%20Impedance,%20Analysis%20of%20Cut%20in%20Active%20Case,%20Exact%20Series,%20and%20Complete%20Asymptotics&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Bernard,%20J.%20M.%20L.&rft.date=2018-12-01&rft.volume=66&rft.issue=12&rft.spage=6596&rft.epage=6605&rft.pages=6596-6605&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2018.2874492&rft_dat=%3Cproquest_RIE%3E2148303331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148303331&rft_id=info:pmid/&rft_ieee_id=8485327&rfr_iscdi=true