Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics
We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2018-12, Vol.66 (12), p.6596-6605 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6605 |
---|---|
container_issue | 12 |
container_start_page | 6596 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 66 |
creator | Bernard, J. M. L. |
description | We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions. |
doi_str_mv | 10.1109/TAP.2018.2874492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8485327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8485327</ieee_id><sourcerecordid>2148303331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</originalsourceid><addsrcrecordid>eNpFUU1rGzEUFKWBumnugV4EvWZdfa6l3pYlbQKGGOJAbotW-1Rk7NVWkkP8X_pjI9emOQ2PmXkwMwhdUzKnlOjv62Y1Z4SqOVMLITT7gGZUSlUxxuhHNCOFqjSrnz-hzyltyimUEDP0dxXDZH6b7MOIH14gYoPbMKZsxozvdxMMZrSAV1szwg_cxN7naOIBr6LfHfEx7KOFhM04vMtvcDOa7SH5hIPD7T5jP-LGZv8CuDWp8Levxmb8CNFDuvlnbsNu2kIG3KTDbsohe5u-oAtntgmuzniJnn7ertu7avnw675tlpVlmuZKESlcLYQgqidW9npB6ULVRgPnTg6qBzuYoXZMcumorZ3rRa0VWK0l4VLwS_Tt9HeK4c8eUu42JVaJkDpWeuKEc06LipxUNoaUIrhuOpXQUdIdN-jKBt1xg-68QbF8PVk8APyXK6EkZwv-Bs7Mg1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148303331</pqid></control><display><type>article</type><title>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</title><source>IEEE Electronic Library (IEL)</source><creator>Bernard, J. M. L.</creator><creatorcontrib>Bernard, J. M. L.</creatorcontrib><description>We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2018.2874492</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical expression ; Antennas ; arbitrary source ; Asymptotic properties ; Boundary conditions ; Current sources ; Electric potential ; Electromagnetic fields ; Electromagnetic scattering ; electromagnetism ; Error functions ; Impedance ; impedance plane ; passive or active material ; scattering ; Surface impedance ; Surface waves</subject><ispartof>IEEE transactions on antennas and propagation, 2018-12, Vol.66 (12), p.6596-6605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</citedby><cites>FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</cites><orcidid>0000-0001-6981-6591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8485327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8485327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bernard, J. M. L.</creatorcontrib><title>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions.</description><subject>Analytical expression</subject><subject>Antennas</subject><subject>arbitrary source</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Current sources</subject><subject>Electric potential</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic scattering</subject><subject>electromagnetism</subject><subject>Error functions</subject><subject>Impedance</subject><subject>impedance plane</subject><subject>passive or active material</subject><subject>scattering</subject><subject>Surface impedance</subject><subject>Surface waves</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFUU1rGzEUFKWBumnugV4EvWZdfa6l3pYlbQKGGOJAbotW-1Rk7NVWkkP8X_pjI9emOQ2PmXkwMwhdUzKnlOjv62Y1Z4SqOVMLITT7gGZUSlUxxuhHNCOFqjSrnz-hzyltyimUEDP0dxXDZH6b7MOIH14gYoPbMKZsxozvdxMMZrSAV1szwg_cxN7naOIBr6LfHfEx7KOFhM04vMtvcDOa7SH5hIPD7T5jP-LGZv8CuDWp8Levxmb8CNFDuvlnbsNu2kIG3KTDbsohe5u-oAtntgmuzniJnn7ertu7avnw675tlpVlmuZKESlcLYQgqidW9npB6ULVRgPnTg6qBzuYoXZMcumorZ3rRa0VWK0l4VLwS_Tt9HeK4c8eUu42JVaJkDpWeuKEc06LipxUNoaUIrhuOpXQUdIdN-jKBt1xg-68QbF8PVk8APyXK6EkZwv-Bs7Mg1U</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Bernard, J. M. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6981-6591</orcidid></search><sort><creationdate>20181201</creationdate><title>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</title><author>Bernard, J. M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8054f644408b0c5b9711786a9e33f5d8becdad6f2535f1c6ffb4698ec99503543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical expression</topic><topic>Antennas</topic><topic>arbitrary source</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Current sources</topic><topic>Electric potential</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic scattering</topic><topic>electromagnetism</topic><topic>Error functions</topic><topic>Impedance</topic><topic>impedance plane</topic><topic>passive or active material</topic><topic>scattering</topic><topic>Surface impedance</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernard, J. M. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernard, J. M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>66</volume><issue>12</issue><spage>6596</spage><epage>6605</epage><pages>6596-6605</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We analyze and detail here a compact solution for the electromagnetic field scattered by an arbitrary constant impedance plane, considering exact potentials for primary current sources composed of dipoles with arbitrary orientations. The special function involved in our expressions is rewritten with nonsingular integral expression valid for any complex arguments that exhibits a correct cut in active case. We describe efficient exact series for arbitrary cases and complete asymptotics, which are both expressed in terms of error functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2018.2874492</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6981-6591</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2018-12, Vol.66 (12), p.6596-6605 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_8485327 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical expression Antennas arbitrary source Asymptotic properties Boundary conditions Current sources Electric potential Electromagnetic fields Electromagnetic scattering electromagnetism Error functions Impedance impedance plane passive or active material scattering Surface impedance Surface waves |
title | Propagation Over a Constant Impedance Plane: Arbitrary Primary Sources and Impedance, Analysis of Cut in Active Case, Exact Series, and Complete Asymptotics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20Over%20a%20Constant%20Impedance%20Plane:%20Arbitrary%20Primary%20Sources%20and%20Impedance,%20Analysis%20of%20Cut%20in%20Active%20Case,%20Exact%20Series,%20and%20Complete%20Asymptotics&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Bernard,%20J.%20M.%20L.&rft.date=2018-12-01&rft.volume=66&rft.issue=12&rft.spage=6596&rft.epage=6605&rft.pages=6596-6605&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2018.2874492&rft_dat=%3Cproquest_RIE%3E2148303331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148303331&rft_id=info:pmid/&rft_ieee_id=8485327&rfr_iscdi=true |